文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

近红外光光敏吲哚菁绿分子在医学中的应用和进展。

Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules.

机构信息

Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China.

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

出版信息

Molecules. 2023 Aug 16;28(16):6085. doi: 10.3390/molecules28166085.


DOI:10.3390/molecules28166085
PMID:37630337
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10459369/
Abstract

Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be converted into heat by ICG molecules to eliminate cancer cells. In addition, it performs exceptionally well in optical imaging-guided tumor therapy and antimicrobial therapy due to its deeper tissue penetration and low photobleaching properties in the near-infrared region compared to other dyes. In order to solve the problems of water and optical stability and multi-function problem of ICG molecules, composite nanomaterials based on ICG have been designed and widely used, especially in the fields of tumors and sterilization. So far, ICG molecules and their composite materials have become one of the most famous infrared sensitive materials. However, there have been no corresponding review articles focused on ICG molecules. In this review, the molecular structure and properties of ICG, composite material design, and near-infrared light- triggered anti-tumor, and antibacterial, and clinical applications are reviewed in detail, which of great significance for related research.

摘要

吲哚菁绿(ICG)是光热治疗(PTT/PDT)和成像的近红外(NIR)光敏分子的重要种类。当暴露于近红外光时,ICG 可以产生活性氧(ROS),从而杀死癌细胞和致病菌。此外,ICG 分子还可以将吸收的光转化为热量,以消除癌细胞。此外,与其他染料相比,ICG 在近红外区域具有更深的组织穿透性和更低的光漂白特性,因此在光学成像引导的肿瘤治疗和抗菌治疗中表现出色。为了解决 ICG 分子的水和光学稳定性以及多功能问题,已经设计并广泛使用了基于 ICG 的复合纳米材料,特别是在肿瘤和杀菌领域。到目前为止,ICG 分子及其复合材料已成为最著名的红外敏感材料之一。然而,目前还没有专门针对 ICG 分子的相关综述文章。在本综述中,详细回顾了 ICG 分子的分子结构和性质、复合材料设计、近红外光触发的抗肿瘤和抗菌作用以及临床应用,这对相关研究具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/7be29a726ac4/molecules-28-06085-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/450e297e4d8f/molecules-28-06085-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/b8753691c8db/molecules-28-06085-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/9f9e184475d1/molecules-28-06085-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/37ccf7f4600c/molecules-28-06085-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/faefd4e6bbac/molecules-28-06085-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/dc991e572351/molecules-28-06085-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/a76c187b121b/molecules-28-06085-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/826a50583bff/molecules-28-06085-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/fb8df57f647d/molecules-28-06085-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/350db597c2d6/molecules-28-06085-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/7be29a726ac4/molecules-28-06085-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/450e297e4d8f/molecules-28-06085-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/b8753691c8db/molecules-28-06085-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/9f9e184475d1/molecules-28-06085-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/37ccf7f4600c/molecules-28-06085-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/faefd4e6bbac/molecules-28-06085-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/dc991e572351/molecules-28-06085-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/a76c187b121b/molecules-28-06085-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/826a50583bff/molecules-28-06085-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/fb8df57f647d/molecules-28-06085-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/350db597c2d6/molecules-28-06085-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/10459369/7be29a726ac4/molecules-28-06085-g011.jpg

相似文献

[1]
Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules.

Molecules. 2023-8-16

[2]
Indocyanine Green-Loaded Silver Nanoparticle@Polyaniline Core/Shell Theranostic Nanocomposites for Photoacoustic/Near-Infrared Fluorescence Imaging-Guided and Single-Light-Triggered Photothermal and Photodynamic Therapy.

ACS Appl Mater Interfaces. 2016-12-13

[3]
Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles.

J Control Release. 2016-2-28

[4]
Near-infrared light activatable niosomes loaded with indocyanine green and plasmonic gold nanorods for theranostic applications.

Biomater Sci. 2023-12-5

[5]
Indocyanine green loaded APTMS coated SPIONs for dual phototherapy of cancer.

J Photochem Photobiol B. 2019-10-13

[6]
TiCT MXene loaded with indocyanine green for synergistic photothermal and photodynamic therapy for drug-resistant bacterium.

Colloids Surf B Biointerfaces. 2022-9

[7]
Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres.

J Control Release. 2017-5-15

[8]
Reactive oxygen species and near-infrared light dual-responsive indocyanine green-loaded nanohybrids for overcoming tumour multidrug resistance.

Eur J Pharm Sci. 2019-4-23

[9]
Antibacterial photodynamic treatment of periodontopathogenic bacteria with indocyanine green and near-infrared laser light enhanced by Trolox(TM).

Lasers Surg Med. 2015-4

[10]
[Diagnostic value of optical imaging combined with indocyanine green-guided sentinel lymph node biopsy in gastric cancer: a meta-analysis].

Zhonghua Wei Chang Wai Ke Za Zhi. 2019-12-25

引用本文的文献

[1]
Ginger-derived exosome-like nanoparticles: a representative of plant-based natural nanostructured drug delivery system.

Front Bioeng Biotechnol. 2025-6-4

[2]
Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths.

Nanomaterials (Basel). 2025-5-28

[3]
Metal coordination polymer nanoparticles for cancer therapy.

Essays Biochem. 2025-4-10

[4]
Multidimensional applications of prussian blue-based nanoparticles in cancer immunotherapy.

J Nanobiotechnology. 2025-3-3

[5]
The Medical Basis for the Photoluminescence of Indocyanine Green.

Molecules. 2025-2-14

[6]
Recent advances in photothermal nanomaterials for ophthalmic applications.

Beilstein J Nanotechnol. 2025-2-17

[7]
Case series on the use of the indocyanine green fluorescence real-time imaging technique for lymph node sorting in patients undergoing radical esophagectomy.

J Thorac Dis. 2024-12-31

[8]
MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology. 2025-1-16

[9]
Targeting Reactive Oxygen Species for Diagnosis of Various Diseases.

J Funct Biomater. 2024-12-15

[10]
Near-infrared photoimmunotherapy in cancer treatment: a bibliometric and visual analysis.

Front Pharmacol. 2024-10-21

本文引用的文献

[1]
Low-Dose NIR-II Preclinical Bioimaging Using Liposome-Encapsulated Cyanine Dyes.

Small. 2023-4

[2]
Photothermally responsive theranostic nanocomposites for near-infrared light triggered drug release and enhanced synergism of photothermo-chemotherapy for gastric cancer.

Bioeng Transl Med. 2022-7-12

[3]
Curcumin/H2O2 photodynamically activated: an antimicrobial time-response assessment against an MDR strain of Candida albicans.

Eur Rev Med Pharmacol Sci. 2022-12

[4]
Rational Modulation of BODIPY Photosensitizers to Design Metal-Organic Framework-Based NIR Nanocomposites for High-Efficiency Photodynamic Therapy in a Hypoxic Environment.

ACS Appl Mater Interfaces. 2022-10-19

[5]
Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens.

Bioact Mater. 2022-8-21

[6]
Covalent Organic Framework Nanocarriers of Singlet Oxygen for Oxygen-Independent Concurrent Photothermal/Photodynamic Therapy to Ablate Hypoxic Tumors.

Small. 2022-9

[7]
Liposome-based multifunctional nanoplatform as effective therapeutics for the treatment of retinoblastoma.

Acta Pharm Sin B. 2022-6

[8]
Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy.

RSC Adv. 2022-6-9

[9]
Tumor microenvironment-responsive nanohybrid for hypoxia amelioration with photodynamic and near-infrared II photothermal combination therapy.

Acta Biomater. 2022-7-1

[10]
Indocyanine Green-Coated Gold Nanoclusters for Photoacoustic Imaging and Photothermal Therapy.

Adv Ther (Weinh). 2019-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索