Ni Hongyin, Jiang Shan
School of Computer Science, Northeast Electric Power University, Jilin 132012, China.
Gongqing Institute of Science and Technology, No. 1 Gongqing Road, Gongqing 332020, China.
Sensors (Basel). 2023 Aug 12;23(16):7140. doi: 10.3390/s23167140.
Image semantic segmentation is an important part of automatic driving assistance technology. The complexity of road scenes and the real-time requirements of application scenes for segmentation algorithm are the challenges facing segmentation algorithms. In order to meet the above challenges, Deep Dual-resolution Road Scene Segmentation Networks based on Decoupled Dynamic Filter and Squeeze-Excitation (DDF&SE-DDRNet) are proposed in this paper. The proposed DDF&SE-DDRNet uses decoupled dynamic filter in each module to reduce the number of network parameters and enable the network to dynamically adjust the weight of each convolution kernel. We add the Squeeze-and-Excitation module to each module of DDF&SE-DDRNet so that the local feature map in the network can obtain global features to reduce the impact of image local interference on the segmentation result. The experimental results on the Cityscapes dataset show that the segmentation accuracy of DDF&SE-DDRNet is at least 2% higher than that of existing algorithms. Moreover, DDF&SE-DDRNet also has satisfactory inferring speed.
图像语义分割是自动驾驶辅助技术的重要组成部分。道路场景的复杂性以及应用场景对分割算法的实时性要求是分割算法面临的挑战。为了应对上述挑战,本文提出了基于解耦动态滤波器和挤压激励的深度双分辨率道路场景分割网络(DDF&SE-DDRNet)。所提出的DDF&SE-DDRNet在每个模块中使用解耦动态滤波器来减少网络参数数量,并使网络能够动态调整每个卷积核的权重。我们在DDF&SE-DDRNet的每个模块中添加了挤压激励模块,以便网络中的局部特征图能够获得全局特征,从而减少图像局部干扰对分割结果的影响。在Cityscapes数据集上的实验结果表明,DDF&SE-DDRNet的分割精度比现有算法至少高2%。此外,DDF&SE-DDRNet还具有令人满意的推理速度。