Suppr超能文献

通过在目标导向的伸展任务中纳入 RAT 初级运动皮层和无颗粒皮质神经元集群活动的校准反馈范式,提高前肢运动轨迹的预测能力。

Enhancing Prediction of Forelimb Movement Trajectory through a Calibrating-Feedback Paradigm Incorporating RAT Primary Motor and Agranular Cortical Ensemble Activity in the Goal-Directed Reaching Task.

机构信息

Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan.

The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 235235, Taiwan.

出版信息

Int J Neural Syst. 2023 Oct;33(10):2350051. doi: 10.1142/S012906572350051X. Epub 2023 Aug 24.

Abstract

Complete reaching movements involve target sensing, motor planning, and arm movement execution, and this process requires the integration and communication of various brain regions. Previously, reaching movements have been decoded successfully from the motor cortex (M1) and applied to prosthetic control. However, most studies attempted to decode neural activities from a single brain region, resulting in reduced decoding accuracy during visually guided reaching motions. To enhance the decoding accuracy of visually guided forelimb reaching movements, we propose a parallel computing neural network using both M1 and medial agranular cortex (AGm) neural activities of rats to predict forelimb-reaching movements. The proposed network decodes M1 neural activities into the primary components of the forelimb movement and decodes AGm neural activities into internal feedforward information to calibrate the forelimb movement in a goal-reaching movement. We demonstrate that using AGm neural activity to calibrate M1 predicted forelimb movement can improve decoding performance significantly compared to neural decoders without calibration. We also show that the M1 and AGm neural activities contribute to controlling forelimb movement during goal-reaching movements, and we report an increase in the power of the local field potential (LFP) in beta and gamma bands over AGm in response to a change in the target distance, which may involve sensorimotor transformation and communication between the visual cortex and AGm when preparing for an upcoming reaching movement. The proposed parallel computing neural network with the internal feedback model improves prediction accuracy for goal-reaching movements.

摘要

完整的伸手运动涉及目标感知、运动规划和手臂运动执行,这个过程需要各种大脑区域的整合和交流。以前,已经成功地从运动皮层(M1)解码了伸手运动,并将其应用于假肢控制。然而,大多数研究试图从单个大脑区域解码神经活动,导致在视觉引导的伸手运动中解码精度降低。为了提高视觉引导的前肢伸手运动的解码精度,我们提出了一种使用大鼠 M1 和内侧颗粒前外侧皮层(AGm)神经活动的并行计算神经网络,以预测前肢伸手运动。该网络将 M1 神经活动解码为前肢运动的主要成分,并将 AGm 神经活动解码为内部前馈信息,以在目标伸手运动中校准前肢运动。我们证明,使用 AGm 神经活动来校准 M1 预测的前肢运动可以显著提高解码性能,而无需校准的神经解码器。我们还表明,M1 和 AGm 神经活动有助于控制目标伸手运动中的前肢运动,并且我们报告说,在目标距离发生变化时,AGm 中的 beta 和 gamma 波段的局部场电位(LFP)功率增加,这可能涉及到在准备即将到来的伸手运动时,感觉运动转换和视觉皮层与 AGm 之间的通信。具有内部反馈模型的并行计算神经网络提高了对目标伸手运动的预测精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验