Chen Xiaotong, Zhang Lianying, Zeng Haifeng, Meng Wei, Liu Guijiang, Zhang Wenhua, Zhao Pei, Zhang Qun, Chen Ming, Chen Jinxiang
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
Small. 2023 Dec;19(50):e2304610. doi: 10.1002/smll.202304610. Epub 2023 Aug 26.
Rheumatoid arthritis (RA) is a chronic autoimmune disease commonly associated with the accumulation of hyperactive immune cells (HICs), particularly macrophages of pro-inflammatory (M1) phenotype, accompanied by the elevated level of reactive oxygen species (ROS), decreased pH and O content in joint synovium. In this work, an immunomodulatory nanosystem (IMN) is developed for RA therapy by modulating and restoring the function of HICs in inflamed tissues. Manganese tetraoxide nanoparticles (Mn O ) nanoparticles anchored on UiO-66-NH are designed, and then the hybrid is coated with Mn-EGCG film, further wrapped with HA to obtain the final nanocomposite of UiO-66-NH @Mn O /Mn-EGCG@HA (termed as UMnEH). When UMnEH diffuses to the inflammatory site of RA synovium, the stimulation of microwave (MW) irradiation and low pH trigger the slow dissociation of Mn-EGCG film. Then the endogenously overexpressed hydrogen peroxide (H O ) disintegrates the exposed Mn O NPs to promote ROS scavenging and O generation. Assisted by MW irradiation, the elevated O content in the RA microenvironment down-regulates the expression of hypoxia-inducible factor-1α (HIF-1α). Coupled with the clearance of ROS, it promotes the re-polarization of M1 phenotype macrophages into anti-inflammatory (M2) phenotype macrophages. Therefore, the multifunctional UMnEH nanoplatform, as the IMN, exhibits a promising potential to modulate and restore the function of HICs and has an exciting prospect in the treatment of RA.
类风湿性关节炎(RA)是一种慢性自身免疫性疾病,通常与过度活跃的免疫细胞(HICs)的积累有关,特别是促炎(M1)表型的巨噬细胞,同时伴有活性氧(ROS)水平升高、关节滑膜中pH值降低和氧含量减少。在这项工作中,通过调节和恢复炎症组织中HICs的功能,开发了一种用于RA治疗的免疫调节纳米系统(IMN)。设计了锚定在UiO-66-NH上的四氧化三锰纳米颗粒(MnO),然后用Mn-EGCG膜包覆该杂化物,再用HA进一步包裹,以获得最终的纳米复合材料UiO-66-NH@MnO/Mn-EGCG@HA(称为UMnEH)。当UMnEH扩散到RA滑膜的炎症部位时,微波(MW)照射和低pH值的刺激会触发Mn-EGCG膜的缓慢解离。然后内源性过表达的过氧化氢(H₂O₂)使暴露的MnO NPs分解,以促进ROS清除和氧生成。在MW照射的辅助下,RA微环境中升高的氧含量下调缺氧诱导因子-1α(HIF-1α)的表达。再加上ROS的清除,它促进M1表型巨噬细胞重新极化为抗炎(M2)表型巨噬细胞。因此,作为IMN的多功能UMnEH纳米平台在调节和恢复HICs功能方面具有广阔的潜力,在RA治疗中具有令人兴奋的前景。