Suppr超能文献

通过 SIRT1/PDK2/PARL 轴抑制线粒体融合会破坏线粒体代谢的灵活性,并使癌细胞对葡萄糖限制治疗敏感。

Inhibition of mitochondrial fusion via SIRT1/PDK2/PARL axis breaks mitochondrial metabolic plasticity and sensitizes cancer cells to glucose restriction therapy.

机构信息

School of Biopharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, People's Republic of China.

School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.

出版信息

Biomed Pharmacother. 2023 Oct;166:115342. doi: 10.1016/j.biopha.2023.115342. Epub 2023 Aug 24.

Abstract

Mitochondria dynamically change their morphology via fusion and fission, a process called mitochondrial dynamics. Dysregulated mitochondrial dynamics respond rapidly to metabolic cues, and are linked to the initiation and progression of diverse human cancers. Metabolic adaptations significantly contribute to tumor development and escape from tissue homeostatic defenses. In this work, we identified oroxylin A (OA), a dual GLUT1/mitochondrial fusion inhibitor, which restricted glucose catabolism of hepatocellular carcinoma cells and simultaneously inhibited mitochondrial fusion by disturbing SIRT1/PDK2/PARL axis. Based the dual action of OA in metabolic regulation and mitochondrial dynamics, further results revealed that mitochondrial functional status and spare respiratory capacity (SRC) of cancer cells had a close correlation with mitochondrial metabolic plasticity, and played important roles in the susceptibility to cancer therapy aiming at glucose restriction. Cancer cells with healthy mitochondria and high SRC exhibit greater metabolic flexibility and higher resistance to GLUT1 inhibitors. This phenomenon is attributed to the fact that high SRC cells fuse mitochondria in response to glucose restriction, enhancing tolerance to energy deficiency, but undergo less mitochondrial oxidative stress compared to low SRC cells. Thus, inhibiting mitochondrial fusion breaks mitochondrial metabolic plasticity and increases cancer cell susceptibility to glucose restriction therapy. Collectively, these finding indicate that combining a GLUT1 inhibitor with a mitochondrial fusion inhibitor can work synergistically in cancer therapy and, more broadly, suggest that the incorporations of mitochondrial dynamics and metabolic regulation may become the targetable vulnerabilities bypassing the genotypic heterogeneity of multiple malignancies.

摘要

线粒体通过融合和裂变动态改变其形态,这一过程称为线粒体动力学。失调的线粒体动力学对代谢信号做出快速响应,并与多种人类癌症的发生和进展有关。代谢适应对肿瘤的发展和逃避组织内稳态防御有重要贡献。在这项工作中,我们鉴定了白杨素 A(OA),一种双重葡萄糖转运蛋白 1/线粒体融合抑制剂,它通过干扰 SIRT1/PDK2/PARL 轴来限制肝癌细胞的葡萄糖分解代谢,同时抑制线粒体融合。基于 OA 在代谢调节和线粒体动力学中的双重作用,进一步的结果表明,癌细胞的线粒体功能状态和备用呼吸能力(SRC)与线粒体代谢可塑性密切相关,并在针对葡萄糖限制的癌症治疗的敏感性中发挥重要作用。线粒体功能健全且 SRC 较高的癌细胞表现出更高的代谢灵活性和对葡萄糖转运蛋白 1 抑制剂更高的抗性。这种现象归因于高 SRC 细胞在葡萄糖限制下融合线粒体,从而增强对能量缺乏的耐受性,但与低 SRC 细胞相比,经历较少的线粒体氧化应激。因此,抑制线粒体融合会破坏线粒体代谢可塑性,并增加癌细胞对葡萄糖限制治疗的敏感性。总的来说,这些发现表明,将葡萄糖转运蛋白 1 抑制剂与线粒体融合抑制剂联合使用可以协同作用于癌症治疗,更广泛地说,表明线粒体动力学和代谢调节的整合可能成为绕过多种恶性肿瘤基因型异质性的靶向弱点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验