Zeng Juan, Chen Hao, Dong Liubing, Wei Lu, Guo Xin
College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
J Colloid Interface Sci. 2023 Dec 15;652(Pt A):856-865. doi: 10.1016/j.jcis.2023.08.037. Epub 2023 Aug 6.
Hydrogel electrolytes containing a large amount of freezable water tend to freeze at subzero temperatures, which catastrophically reduces their ionic conductivity and thus limits their practical applications. In this work, we propose a new type anti-freezing hydrogel electrolyte based on an additive of zwitterionic proline, which can maintain high ionic conductivities of hydrogel electrolytes at subzero temperatures. The unique zwitterionic structure leads to several interesting characters like strong hydration, strong ionic interactions and low self-associations, which is proved to be the keys for the high performance of hydrogel electrolytes under low temperatures. As a result, the proline hydrogel electrolytes show a high ionic conductivity of 4.2 mS cm even at -40 °C. The activated carbon electrode of supercapacitors based on proline hydrogel electrolytes delivers high specific capacitances of 145.8 (at 0.5 A g) and 116.1 F g (at 0.5 A g) at 25 and -30 °C, respectively. Furthermore, the specific capacitance still shows a high retention of 71% after 12,000 charge/discharge cycles at -30 °C, confirming the good low-temperature adaptability. Such anti-freezing electrolytes with high ionic conductivity will open up a new avenue for anti-freezing energy storage devices, not limited to supercapacitors.
含有大量可冻结水的水凝胶电解质往往会在零下温度下冻结,这会极大地降低其离子电导率,从而限制其实际应用。在这项工作中,我们基于两性离子脯氨酸添加剂提出了一种新型抗冻水凝胶电解质,它可以在零下温度下保持水凝胶电解质的高离子电导率。独特的两性离子结构导致了一些有趣的特性,如强水合作用、强离子相互作用和低自缔合作用,事实证明这些是水凝胶电解质在低温下高性能的关键。结果,脯氨酸水凝胶电解质即使在-40°C时仍显示出4.2 mS cm的高离子电导率。基于脯氨酸水凝胶电解质的超级电容器的活性炭电极在25°C和-30°C时分别具有145.8(在0.5 A g时)和116.1 F g(在0.5 A g时)的高比电容。此外,在-30°C下进行12000次充放电循环后,比电容仍保持71%的高保留率,证实了良好的低温适应性。这种具有高离子电导率的抗冻电解质将为抗冻储能装置开辟一条新途径,不仅限于超级电容器。