Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
Int J Biol Macromol. 2024 Sep;276(Pt 2):133759. doi: 10.1016/j.ijbiomac.2024.133759. Epub 2024 Jul 8.
The introduction of flame retardancy and low-temperature self-healing capacities in hydrogel electrolytes are crucial for promoting the cycle stability and durability of the flexible supercapacitors in extreme environments. Herein, biomass-based dual-network hydrogel electrolyte (named PSBGL), was synthesized with borax crosslinked peach gum polysaccharide/sisal nanofibers composite, and its application in flexible supercapacitors was also investigated in detail. The dynamic cross-linking of the dual-network endows the PSBGL with excellent self-healing performance, enabling ultrafast self-healing within seconds at both room temperature and extreme low temperatures. The PSBGL bio-based hydrogel electrolyte can maintain the integrity of the carbon layer structure with limiting oxygen index of 56 % after 60 s of combustion under a flame gun. Additionally, the PSBGL exhibits high ionic conductivity (30.12 mS cm), good tensile strength (1.78 MPa), and robust adhesion to electrodes (1.15 MPa). The assembled supercapacitors demonstrate a high specific capacitance of 187.8 F g at 0.5 A g, with 95.9 % capacitance retention rate after 10,000 cycles at room temperature. Importantly, even under extreme temperatures of 60 °C and -35 °C, the supercapacitors can also maintain high capacitance retention rates of 90.1 % and 86.5 % after 10,000 cycles. This work fills the gap between biomaterial design and high-performance flexible supercapacitors.
在水凝胶电解质中引入阻燃性和低温自修复能力对于提高柔性超级电容器在极端环境下的循环稳定性和耐用性至关重要。本文合成了一种基于生物质的双网络水凝胶电解质(命名为 PSBGL),采用硼砂交联桃胶多糖/剑麻纳米纤维复合材料,并详细研究了其在柔性超级电容器中的应用。双网络的动态交联赋予 PSBGL 优异的自修复性能,使其在室温下和极端低温下都能在数秒内实现超快自修复。PSBGL 基水凝胶电解质在火焰喷枪下燃烧 60 秒后,仍能保持其碳层结构的完整性,其极限氧指数为 56%。此外,PSBGL 还表现出高离子电导率(30.12 mS cm)、良好的拉伸强度(1.78 MPa)和与电极的牢固结合力(1.15 MPa)。组装的超级电容器在 0.5 A g 下具有 187.8 F g 的高比电容,在室温下经过 10,000 次循环后,电容保持率为 95.9%。重要的是,即使在 60°C 和-35°C 的极端温度下,超级电容器在经过 10,000 次循环后仍能保持 90.1%和 86.5%的高电容保持率。这项工作填补了生物材料设计与高性能柔性超级电容器之间的空白。