Suppr超能文献

无模型理想化:离子通道电流理想化的自适应综合方法。

Model-free idealization: Adaptive integrated approach for idealization of ion-channel currents.

机构信息

Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan.

Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.

出版信息

Biophys J. 2023 Oct 3;122(19):3959-3975. doi: 10.1016/j.bpj.2023.08.019. Epub 2023 Aug 25.

Abstract

Single-channel electrophysiological recordings provide insights into transmembrane ion permeation and channel gating mechanisms. The first step in the analysis of the recorded currents involves an "idealization" process, in which noisy raw data are classified into two discrete levels corresponding to the open and closed states of channels. This provides valuable information on the gating kinetics of ion channels. However, the idealization step is often challenging in cases of currents with poor signal-to-noise ratios and baseline drifts, especially when the gating model of the target channel is not identified. We report herein on a highly robust model-free idealization method for achieving this goal. The algorithm, called adaptive integrated approach for idealization of ion-channel currents (AI2), is composed of Kalman filter and Gaussian mixture model clustering and functions without user input. AI2 automatically determines the noise reduction setting based on the degree of separation between the open and closed levels. We validated the method on pseudo-channel-current datasets that contain either computed or experimentally recorded noise. We also investigated the relationship between the noise reduction parameter of the Kalman filter and the cutoff frequency of the low-pass filter. The AI2 algorithm was then tested on actual experimental data for biological channels including gramicidin A, a voltage-gated sodium channel, and other unidentified channels. We compared the idealization results with those obtained by the conventional methods, including the 50%-threshold-crossing method.

摘要

单通道电生理记录提供了对跨膜离子渗透和通道门控机制的深入了解。分析记录电流的第一步涉及到一个“理想化”过程,其中嘈杂的原始数据被分类为对应于通道开放和关闭状态的两个离散水平。这为离子通道的门控动力学提供了有价值的信息。然而,在信号噪声比较低和基线漂移的情况下,特别是当目标通道的门控模型未被识别时,理想化步骤往往具有挑战性。我们在此报告了一种高度稳健的无模型理想化方法,用于实现这一目标。该算法称为离子通道电流的自适应综合理想化方法(AI2),由卡尔曼滤波器和高斯混合模型聚类组成,无需用户输入。AI2 自动根据开放和关闭水平之间的分离程度确定降噪设置。我们在包含计算或实验记录噪声的伪通道电流数据集上验证了该方法。我们还研究了卡尔曼滤波器的降噪参数与低通滤波器截止频率之间的关系。然后,我们将 AI2 算法应用于实际的生物通道实验数据,包括革兰氏菌素 A、电压门控钠离子通道和其他未识别的通道。我们将理想化结果与传统方法(包括 50%-阈值穿越法)的结果进行了比较。

相似文献

6
Heterogeneous Idealization of Ion Channel Recordings - Open Channel Noise.离子通道记录的异质性理想化——开放通道噪声
IEEE Trans Nanobioscience. 2021 Jan;20(1):57-78. doi: 10.1109/TNB.2020.3031202. Epub 2020 Dec 30.
7
Sodium and calcium channels in bovine chromaffin cells.牛嗜铬细胞中的钠通道和钙通道。
J Physiol. 1982 Oct;331:599-635. doi: 10.1113/jphysiol.1982.sp014394.

本文引用的文献

7
Lipid nanodomains change ion channel function.脂质纳米域改变离子通道功能。
Nanoscale. 2017 Sep 14;9(35):13291-13297. doi: 10.1039/c7nr03926c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验