Suppr超能文献

ICON:一种适用于具有漂移的时间轨迹的无限隐马尔可夫模型改编版。

ICON: An Adaptation of Infinite HMMs for Time Traces with Drift.

作者信息

Sgouralis Ioannis, Pressé Steve

机构信息

Department of Physics, Arizona State University, Tempe, Arizona.

Department of Physics, Arizona State University, Tempe, Arizona; School of Molecular Sciences, Arizona State University, Tempe, Arizona.

出版信息

Biophys J. 2017 May 23;112(10):2117-2126. doi: 10.1016/j.bpj.2017.04.009.

Abstract

Bayesian nonparametric methods have recently transformed emerging areas within data science. One such promising method, the infinite hidden Markov model (iHMM), generalizes the HMM that itself has become a workhorse in single molecule data analysis. The iHMM goes beyond the HMM by self-consistently learning all parameters learned by the HMM in addition to learning the number of states without recourse to any model selection steps. Despite its generality, simple features (such as drift), common to single molecule time traces, result in an overinterpretation of drift and the introduction of artifact states. Here we present an adaptation of the iHMM that can treat data with drift originating from one or many traces (e.g., Förster resonance energy transfer). Our fully Bayesian method couples the iHMM to a continuous control process (drift) self-consistently learned while learning all other quantities determined by the iHMM (including state numbers). A key advantage of this method is that all traces-regardless of drift or states visited across traces-may now be treated on an equal footing, thereby eliminating user-dependent trace selection (based on drift levels), preprocessing to remove drift, and postprocessing model selection based on state number.

摘要

贝叶斯非参数方法最近改变了数据科学中的新兴领域。一种这样有前景的方法,即无限隐马尔可夫模型(iHMM),对本身已成为单分子数据分析中主力工具的隐马尔可夫模型(HMM)进行了推广。iHMM超越了HMM,它通过自洽地学习HMM所学习的所有参数,此外还能在无需任何模型选择步骤的情况下学习状态数量。尽管具有通用性,但单分子时间轨迹中常见的简单特征(如漂移)会导致对漂移的过度解读以及人为状态的引入。在此,我们提出一种iHMM的改进方法,它能够处理源自一条或多条轨迹(例如,荧光共振能量转移)的带有漂移的数据。我们的全贝叶斯方法将iHMM与一个连续控制过程(漂移)自洽地结合起来,该过程在学习由iHMM确定的所有其他量(包括状态数量)时进行学习。此方法的一个关键优势在于,现在所有轨迹——无论有无漂移或跨轨迹访问的状态如何——都可以在平等的基础上进行处理,从而消除了依赖用户的轨迹选择(基于漂移水平)、去除漂移的预处理以及基于状态数量的后处理模型选择。

相似文献

引用本文的文献

4
An accurate probabilistic step finder for time-series analysis.一种用于时间序列分析的精确概率步长查找器。
Biophys J. 2024 Sep 3;123(17):2749-2764. doi: 10.1016/j.bpj.2024.01.008. Epub 2024 Jan 9.
6
Monte Carlo samplers for efficient network inference.蒙特卡罗采样器在网络推断中的高效应用。
PLoS Comput Biol. 2023 Jul 18;19(7):e1011256. doi: 10.1371/journal.pcbi.1011256. eCollection 2023 Jul.
8
Learning continuous potentials from smFRET.从 smFRET 中学习连续势能。
Biophys J. 2023 Jan 17;122(2):433-441. doi: 10.1016/j.bpj.2022.11.2947. Epub 2022 Dec 5.

本文引用的文献

2
A New Phase in ALS Research.肌萎缩侧索硬化症研究的新阶段。
Structure. 2016 Sep 6;24(9):1435-6. doi: 10.1016/j.str.2016.08.003.
4
A primer on Bayesian inference for biophysical systems.生物物理系统的贝叶斯推理入门
Biophys J. 2015 May 5;108(9):2103-13. doi: 10.1016/j.bpj.2015.03.042.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验