Suppr超能文献

ProxyMix:基于代理的 Mixup 训练与标签精炼相结合,用于无源域自适应。

ProxyMix: Proxy-based Mixup training with label refinery for source-free domain adaptation.

机构信息

School of Computer Science and Technology, Anhui University, China.

University of Science and Technology of China, China; State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) and Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences (CASIA), China.

出版信息

Neural Netw. 2023 Oct;167:92-103. doi: 10.1016/j.neunet.2023.08.005. Epub 2023 Aug 9.

Abstract

Due to privacy concerns and data transmission issues, Source-free Unsupervised Domain Adaptation (SFDA) has gained popularity. It exploits pre-trained source models, rather than raw source data for target learning, to transfer knowledge from a labeled source domain to an unlabeled target domain. Existing methods solve this problem typically with additional parameters or noisy pseudo labels, and we propose an effective method named Proxy-based Mixup training with label refinery (ProxyMix) to avoid these drawbacks. To avoid additional parameters and leverages information in the source model, ProxyMix defines classifier weights as class prototypes and creates a class-balanced proxy source domain using nearest neighbors of the prototypes. To improve the reliability of pseudo labels, we further propose the frequency-weighted aggregation strategy to generate soft pseudo labels for unlabeled target data. Our strategy utilizes target features' internal structure, increases weights of low-frequency class samples, and aligns the proxy and target domains using inter- and intra-domain mixup regularization. This mitigates the negative impact of noisy labels. Experiments on three 2D image and 3D point cloud object recognition benchmarks demonstrate that ProxyMix yields state-of-the-art performance for source-free UDA tasks.

摘要

由于隐私问题和数据传输问题,无源无监督领域自适应(SFDA)变得流行起来。它利用预训练的源模型,而不是原始源数据进行目标学习,从而将知识从有标签的源域转移到无标签的目标域。现有的方法通常通过附加参数或噪声伪标签来解决这个问题,我们提出了一种名为基于代理的混合训练与标签精炼(ProxyMix)的有效方法来避免这些缺点。为了避免附加参数并利用源模型中的信息,ProxyMix 将分类器权重定义为类原型,并使用原型的最近邻创建一个类平衡的代理源域。为了提高伪标签的可靠性,我们进一步提出了频率加权聚合策略,为无标签的目标数据生成软伪标签。我们的策略利用了目标特征的内部结构,增加了低频类样本的权重,并使用域间和域内混合正则化来对齐代理域和目标域。这减轻了噪声标签的负面影响。在三个二维图像和三维点云对象识别基准上的实验表明,ProxyMix 在无源 UDA 任务中取得了最先进的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验