Suppr超能文献

刚果红染色在数字病理学中的应用:通过刚果红荧光数字分析实现淀粉样变检测的简化流程。

Congo Red Staining in Digital Pathology: The Streamlined Pipeline for Amyloid Detection Through Congo Red Fluorescence Digital Analysis.

机构信息

Department of Medicine and Surgery, Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy.

Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy.

出版信息

Lab Invest. 2023 Nov;103(11):100243. doi: 10.1016/j.labinv.2023.100243. Epub 2023 Aug 25.

Abstract

Renal amyloidosis is a rare condition caused by the progressive accumulation of misfolded proteins within glomeruli, vessels, and interstitium, causing functional decline and requiring prompt treatment due to its significant morbidity and mortality. Congo red (CR) stain on renal biopsy samples is the gold standard for diagnosis, but the need for polarized light is limiting the digitization of this nephropathology field. This study explores the feasibility and reliability of CR fluorescence on virtual slides (CRFvs) in evaluating the diagnostic accuracy and proposing an automated digital pipeline for its assessment. Whole-slide images from 154 renal biopsies with CR were scanned through a Texas red fluorescence filter (NanoZoomer S60, Hamamatsu) at the digital Nephropathology Center of the Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo, Monza, Italy, and evaluated double-blinded for the detection and quantification through the amyloid score and a custom ImageJ pipeline was built to automatically detect amyloid-containing regions. Interobserver agreement for CRFvs was optimal (k = 0.90; 95% CI, 0.81-0.98), with even better concordance when consensus-based CRFvs evaluation was compared to the standard CR birefringence (BR) (k = 0.98; 95% CI, 0.93-1). Excellent performance was achieved in the assessment of amyloid score overall by CRFvs (weighted k = 0.70; 95% CI, 0.08-1), especially within the interstitium (weighted k = 0.60; 95% CI, 0.35-0.84), overcoming the misinterpretation of interstitial and capsular collagen BR. The application of an automated digital pathology pipeline (Streamlined Pipeline for Amyloid detection through CR fluorescence Digital Analysis, SPADA) further increased the performance of pathologists, leading to a complete concordance with the standard BR. This study represents an initial step in the validation of CRFvs, demonstrating its general reliability in a digital nephropathology center. The computational method used in this study has the potential to facilitate the integration of spatial omics and artificial intelligence tools for the diagnosis of amyloidosis, streamlining its detection process.

摘要

肾淀粉样变性是一种罕见的疾病,由错误折叠的蛋白质在肾小球、血管和间质中进行性积累引起,导致功能下降,由于其较高的发病率和死亡率,需要及时治疗。刚果红(CR)染色在肾活检样本中的应用是诊断的金标准,但需要偏光的限制,使这个肾病理学领域的数字化受到限制。本研究探讨了虚拟载玻片上的 CR 荧光(CRFvs)评估诊断准确性的可行性和可靠性,并提出了一种自动化数字分析流程。意大利蒙扎圣杰尔达研究与治疗研究所的数字肾病中心通过红色荧光滤光片(NanoZoomer S60,滨松)对 154 例有 CR 的肾活检全切片图像进行扫描,并通过定制的 ImageJ 管道进行双盲评估,以自动检测含有淀粉样物质的区域。CRFvs 的观察者间一致性最佳(k=0.90;95%置信区间,0.81-0.98),与基于共识的 CRFvs 评估与标准 CR 双折射(BR)的一致性更好(k=0.98;95%置信区间,0.93-1)。CRFvs 对淀粉样评分的评估总体表现出色(加权 k=0.70;95%置信区间,0.08-1),尤其是在间质(加权 k=0.60;95%置信区间,0.35-0.84),克服了间质和包膜胶原 BR 的错误解释。应用自动化数字病理学管道(通过 CR 荧光数字分析简化淀粉样检测管道,SPADA)进一步提高了病理学家的表现,与标准 BR 完全一致。本研究代表了在数字肾病中心验证 CRFvs 的初步步骤,证明了其在数字病理学中的一般可靠性。本研究中使用的计算方法有可能促进空间组学和人工智能工具在淀粉样变性诊断中的整合,简化其检测过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验