Suppr超能文献

刚果红荧光增强了心脏淀粉样变性的数字病理工作流程。

Congo red fluorescence enhances digital pathology workflow in cardiac amyloidosis.

作者信息

Cazzaniga Giorgio, De Gaspari Monica, L'Imperio Vincenzo, Beretta Carlo, Greco Angela, Rizzo Stefania, Basso Cristina, Pagni Fabio

机构信息

Pathology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy.

Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.

出版信息

Sci Rep. 2025 Jul 11;15(1):25089. doi: 10.1038/s41598-025-07157-5.

Abstract

Despite advances in non-invasive methods, endomyocardial biopsy (EMB) remains essential for definitive diagnosis of amyloidosis in many cases. Traditionally, Congo red birefringence (CRB) has been crucial for identifying amyloid deposits but is challenging to capture digitally. Emerging fluorescent Congo red imaging (CRF) overcomes this problem and holds promise in image analysis and AI applications. The diagnostic performance of CRF on virtual slides was evaluated in a cohort of EMB and autopsy cases. The feasibility of developing AI algorithms applicable to centers lacking a fluorescence scanner was investigated leveraging a computational pipeline that enables fluorescence outcome visualization in brightfield. The study analyzed 43 digital myocardial slides stained with Congo Red, acquired using a fluorescent Texas Red filter. Among these, 28 (65%) were diagnosed with amyloidosis, with complete diagnostic agreement with original diagnosis. AI achieved an AUC-ROC of 0.87, 0.86 and 0.79 on the training, validation and test set, respectively, in tile-level classification for amyloidosis positivity and IoU and Dice scores indicating partial but reasonable overlap between predictions and ground truth in amyloid segmentation. The study underscores CRF's transformative impact on virtual slides and AI integration for diagnosing cardiac amyloidosis, showcasing high reliability and diagnostic accuracy. These advancements promise a more quantitative and precise approach, facilitating the histological study of the disease in the digital transition era of pathology labs.

摘要

尽管非侵入性方法取得了进展,但在许多情况下,心内膜心肌活检(EMB)对于淀粉样变性的明确诊断仍然至关重要。传统上,刚果红双折射(CRB)对于识别淀粉样沉积物至关重要,但在数字采集方面具有挑战性。新兴的荧光刚果红成像(CRF)克服了这一问题,并在图像分析和人工智能应用方面具有前景。在一组EMB和尸检病例中评估了CRF在虚拟切片上的诊断性能。利用一种能够在明场中实现荧光结果可视化的计算管道,研究了开发适用于缺乏荧光扫描仪的中心的人工智能算法的可行性。该研究分析了43张用刚果红染色的数字心肌切片,这些切片是使用荧光德克萨斯红滤光片获取的。其中,28例(65%)被诊断为淀粉样变性,与原诊断完全一致。在淀粉样变性阳性的切片水平分类中,人工智能在训练集、验证集和测试集上的AUC-ROC分别为0.87、0.86和0.79,交并比(IoU)和骰子系数(Dice)得分表明在淀粉样分割中预测与真实情况之间存在部分但合理的重叠。该研究强调了CRF对虚拟切片以及用于诊断心脏淀粉样变性的人工智能整合的变革性影响,展示了高可靠性和诊断准确性。这些进展有望带来一种更定量、精确的方法,促进病理实验室数字转型时代该疾病的组织学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edaf/12254226/d203045a58a3/41598_2025_7157_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验