Choi Goeun, Rejinold N Sanoj, Piao Huiyan, Ryu Young Bae, Kwon Hyung-Jun, Lee In Chul, Seo Jeong In, Yoo Hye Hyun, Jin Geun-Woo, Choy Jin-Ho
Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.
Small. 2024 Sep;20(39):e2305148. doi: 10.1002/smll.202305148. Epub 2023 Aug 27.
The coronavirus disease 2019 (COVID-19) pandemic is a serious global threat with surging new variants of concern. Although global vaccinations have slowed the pandemic, their longevity is still unknown. Therefore, new orally administrable antiviral agents are highly demanded. Among various repurposed drugs, niclosamide (NIC) is the most potential one for various viral diseases such as COVID-19, SARS (severe acute respiratory syndrome), MERS (middle east respiratory syndrome), influenza, RSV (respiratory syncytial virus), etc. Since NIC cannot be effectively absorbed, a required plasma concentration for antiviral potency is hard to maintain, thereby restricting its entry into the infected cells. Such a 60-year-old bioavailability challenging issue has been overcome by engineering with MgO and hydroxypropyl methylcellulose (HPMC), forming hydrophilic NIC-MgO-HPMC, with improved intestinal permeability without altering NIC metabolism as confirmed by parallel artificial membrane permeability assay. The inhibitory effect on SARS-CoV-2 replication is confirmed in the Syrian hamster model to reduce lung injury. Clinical studies reveal that the bioavailability of NIC hybrid drug can go 4 times higher than the intact NIC. The phase II clinical trial shows a dose-dependent bioavailability of NIC from hybrid drug suggesting its potential applicability as a game changer in achieving the much-anticipated endemic phase.
2019年冠状病毒病(COVID-19)大流行是一个严重的全球威胁,令人担忧的新变种不断涌现。尽管全球疫苗接种减缓了大流行,但疫苗的长期效果仍不明朗。因此,对新型口服抗病毒药物的需求非常迫切。在各种重新利用的药物中,氯硝柳胺(NIC)是对多种病毒性疾病最具潜力的药物之一,如COVID-19、SARS(严重急性呼吸综合征)、MERS(中东呼吸综合征)、流感、呼吸道合胞病毒(RSV)等。由于NIC不能被有效吸收,很难维持抗病毒效力所需的血浆浓度,从而限制了其进入受感染细胞。通过用氧化镁(MgO)和羟丙基甲基纤维素(HPMC)进行工程改造,克服了这一长达60年的生物利用度难题,形成了亲水性的NIC-MgO-HPMC,经平行人工膜通透性试验证实,其肠道通透性得到改善,同时不改变NIC的代谢。在叙利亚仓鼠模型中证实了其对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)复制的抑制作用,可减轻肺损伤。临床研究表明,NIC混合药物的生物利用度可比完整的NIC高出4倍。II期临床试验显示,混合药物中NIC的生物利用度呈剂量依赖性,这表明其作为改变游戏规则的药物在实现人们期待已久的地方病阶段方面具有潜在适用性。