Wang Chao-Peng, Lian Xin, Lin Yu-Xuan, Cui Lei, Li Chen-Ning, Li Na, Zhang An-Ni, Yin Jun, Kang Joohoon, Zhu Jian, Bu Xian-He
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.
College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China.
Small. 2023 Dec;19(52):e2305201. doi: 10.1002/smll.202305201. Epub 2023 Aug 27.
Multifunctional electrocatalysts are crucial to cost-effective electrochemical energy conversion and storage systems requiring mutual enhancement of disparate reactions. Embedding noble metal nanoparticles in 2D metal-organic frameworks (MOFs) are proposed as an effective strategy, however, the hybrids usually suffer from poor electrochemical performance and electrical conductivity in operating conditions. Herein, ultrafine Pt nanoparticles strongly anchored on thiophenedicarboxylate acid based 2D Fe-MOF nanobelt arrays (Pt@Fe-MOF) are fabricated, allowing sufficient exposure of active sites with superior trifunctional electrocatalytic activity for hydrogen evolution, oxygen evolution, and oxygen reduction reactions. The interfacial Fe─O─Pt bonds can induce the charge redistribution of metal centers, leading to the optimization of adsorption energy for reaction intermediates, while the dispersibility of ultrafine Pt nanoparticles contributes to the high mass activity. When Pt@Fe-MOF is used as bifunctional catalysts for water-splitting, a low voltage of 1.65 V is required at 100 mA cm with long-term stability for 20 h at temperatures (65 °C) relevant for industrial applications, outperforming commercial benchmarks. Furthermore, liquid Zn-air batteries with Pt@Fe-MOF in cathodes deliver high open-circuit voltages (1.397 V) and decent cycling stability, which motivates the fabrication of flexible quasisolid-state rechargeable Zn-air batteries with remarkable performance.
多功能电催化剂对于需要不同反应相互促进的具有成本效益的电化学能量转换和存储系统至关重要。将贵金属纳米颗粒嵌入二维金属有机框架(MOF)中被认为是一种有效的策略,然而,在操作条件下,这种杂化材料通常电化学性能和电导率较差。在此,制备了牢固锚定在基于噻吩二甲酸的二维铁基MOF纳米带阵列(Pt@Fe-MOF)上的超细Pt纳米颗粒,使得活性位点充分暴露,对析氢、析氧和氧还原反应具有优异的三功能电催化活性。界面Fe─O─Pt键可诱导金属中心的电荷重新分布,从而优化反应中间体的吸附能,而超细Pt纳米颗粒的分散性有助于提高质量活性。当Pt@Fe-MOF用作水分解的双功能催化剂时,在100 mA cm下需要1.65 V的低电压,在与工业应用相关的温度(65°C)下具有20小时的长期稳定性,性能优于商业基准。此外,阴极中含有Pt@Fe-MOF的液态锌空气电池具有高开路电压(1.397 V)和良好的循环稳定性,这推动了具有卓越性能的柔性准固态可充电锌空气电池的制造。