Suppr超能文献

从电子健康记录中提取补充和综合健康方法。

Extracting Complementary and Integrative Health Approaches in Electronic Health Records.

作者信息

Zhou Huixue, Silverman Greg, Niu Zhongran, Silverman Jenzi, Evans Roni, Austin Robin, Zhang Rui

机构信息

Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55414 USA.

Department of Surgery, University of Minnesota, Minneapolis, MN 55414 USA.

出版信息

J Healthc Inform Res. 2023 Aug 17;7(3):277-290. doi: 10.1007/s41666-023-00137-2. eCollection 2023 Sep.

Abstract

Complementary and Integrative Health (CIH) has gained increasing popularity in the past decades. While the evidence bases to support them are growing, there is still a gap in understanding their effects and potential adverse events using real-world data. The overall goal of this study is to represent information pertinent to both psychological and physical CIH approaches (specifically, using examples of music therapy, chiropractic, and aquatic exercise in this study) in an electronic health record (EHR) system. We also aim to evaluate the ability of existing natural language processing (NLP) systems to identify CIH approaches. A total of 300 notes were randomly selected and manually annotated. Annotations were made for , , and of each approach. This set of annotations was used as a gold standard to evaluate the performance of NLP systems used in this study (specifically BioMedICUS, MetaMap, and cTAKES) for extracting CIH concepts. Venn diagram was used to investigate the consistency of medical records searching by Current Procedural Terminology (CPT) codes and CIH approaches keywords in SQL. Since CPT codes usually do not have specific mentions of CIH approaches, the Venn diagram had less overlap with those found in clinical notes for all three CIH therapies. The three NLP systems achieved 0.41 in average lenient match F1-score in all three CIH approaches, respectively. BioMedICUS achieved the best performance in aquatic exercise with an F1-score of 0.66. This study contributes to the overall representation of CIH in clinical note and lays a foundation for using EHR for clinical research for CIH approaches.

摘要

在过去几十年中,补充与整合医学(CIH)越来越受欢迎。虽然支持它们的证据基础在不断增加,但利用真实世界数据来理解其效果和潜在不良事件方面仍存在差距。本研究的总体目标是在电子健康记录(EHR)系统中呈现与心理和身体CIH方法相关的信息(具体而言,本研究中使用音乐疗法、脊椎按摩疗法和水上运动的示例)。我们还旨在评估现有自然语言处理(NLP)系统识别CIH方法的能力。总共随机选择了300份记录并进行人工标注。对每种方法的 、 和 进行了标注。这组标注被用作金标准,以评估本研究中使用的NLP系统(具体为BioMedICUS、MetaMap和cTAKES)提取CIH概念的性能。使用维恩图来研究通过当前程序术语(CPT)代码和SQL中的CIH方法关键词进行病历搜索的一致性。由于CPT代码通常没有对CIH方法的具体提及,维恩图与所有三种CIH疗法在临床记录中发现的内容重叠较少。这三个NLP系统在所有三种CIH方法中平均宽松匹配F1分数分别达到0.41。BioMedICUS在水上运动方面表现最佳,F1分数为0.66。本研究有助于在临床记录中全面呈现CIH,并为将电子健康记录用于CIH方法的临床研究奠定了基础。

相似文献

1
Extracting Complementary and Integrative Health Approaches in Electronic Health Records.从电子健康记录中提取补充和综合健康方法。
J Healthc Inform Res. 2023 Aug 17;7(3):277-290. doi: 10.1007/s41666-023-00137-2. eCollection 2023 Sep.

本文引用的文献

6
Clinical information extraction applications: A literature review.临床信息提取应用:文献综述。
J Biomed Inform. 2018 Jan;77:34-49. doi: 10.1016/j.jbi.2017.11.011. Epub 2017 Nov 21.
7
Complementary and Alternative Medicine Services in the Military Health System.军事卫生系统中的补充与替代医学服务
J Altern Complement Med. 2017 Nov;23(11):837-843. doi: 10.1089/acm.2017.0236. Epub 2017 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验