Suppr超能文献

全人建模:一种心理健康研究的跨学科方法。

Whole Person Modeling: a transdisciplinary approach to mental health research.

作者信息

Felsky Daniel, Cannitelli Alyssa, Pipitone Jon

机构信息

Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8 Canada.

Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada.

出版信息

Discov Ment Health. 2023;3(1):16. doi: 10.1007/s44192-023-00041-6. Epub 2023 Aug 24.

Abstract

The growing global burden of mental illness has prompted calls for innovative research strategies. Theoretical models of mental health include complex contributions of biological, psychosocial, experiential, and other environmental influences. Accordingly, neuropsychiatric research has self-organized into largely isolated disciplines working to decode each individual contribution. However, research directly modeling objective biological measurements in combination with cognitive, psychological, demographic, or other environmental measurements is only now beginning to proliferate. This review aims to (1) to describe the landscape of modern mental health research and current movement towards integrative study, (2) to provide a concrete framework for quantitative integrative research, which we call Whole Person Modeling, (3) to explore existing and emerging techniques and methods used in Whole Person Modeling, and (4) to discuss our observations about the scarcity, potential value, and untested aspects of highly transdisciplinary research in general. Whole Person Modeling studies have the potential to provide a better understanding of multilevel phenomena, deliver more accurate diagnostic and prognostic tests to aid in clinical decision making, and test long standing theoretical models of mental illness. Some current barriers to progress include challenges with interdisciplinary communication and collaboration, systemic cultural barriers to transdisciplinary career paths, technical challenges in model specification, bias, and data harmonization, and gaps in transdisciplinary educational programs. We hope to ease anxiety in the field surrounding the often mysterious and intimidating world of transdisciplinary, data-driven mental health research and provide a useful orientation for students or highly specialized researchers who are new to this area.

摘要

全球精神疾病负担日益加重,这促使人们呼吁采用创新的研究策略。心理健康的理论模型包括生物、心理社会、经验以及其他环境影响等多方面的复杂因素。因此,神经精神病学研究已自行组织成了很大程度上相互孤立的学科,致力于解读每一个单独的影响因素。然而,将客观生物测量与认知、心理、人口统计学或其他环境测量相结合进行直接建模的研究,直到现在才开始增多。本综述旨在:(1)描述现代心理健康研究的现状以及当前向综合研究发展的趋势;(2)为定量综合研究提供一个具体框架,我们称之为全人建模;(3)探索全人建模中使用的现有和新兴技术与方法;(4)讨论我们对一般高度跨学科研究的稀缺性、潜在价值和未经检验方面的观察结果。全人建模研究有可能更好地理解多层次现象,提供更准确的诊断和预后测试以辅助临床决策,并检验长期存在的精神疾病理论模型。目前取得进展的一些障碍包括跨学科沟通与合作方面的挑战、跨学科职业道路的系统性文化障碍、模型规范、偏差和数据协调方面的技术挑战,以及跨学科教育项目的差距。我们希望缓解该领域对常常神秘且令人生畏的跨学科、数据驱动的心理健康研究领域的焦虑,并为刚涉足该领域的学生或高度专业化研究人员提供有用的指导。

相似文献

7
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

本文引用的文献

4
Digital twins and the future of precision mental health.数字孪生与精准心理健康的未来。
Front Psychiatry. 2023 Mar 13;14:1082598. doi: 10.3389/fpsyt.2023.1082598. eCollection 2023.
7
Multi-omics data integration methods and their applications in psychiatric disorders.多组学数据整合方法及其在精神疾病中的应用。
Eur Neuropsychopharmacol. 2023 Apr;69:26-46. doi: 10.1016/j.euroneuro.2023.01.001. Epub 2023 Jan 25.
10
Youth engagement in mental health research: A systematic review.青年参与精神健康研究:系统评价。
Health Expect. 2023 Feb;26(1):30-50. doi: 10.1111/hex.13650. Epub 2022 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验