Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel.
Methods Mol Biol. 2024;2713:481-503. doi: 10.1007/978-1-0716-3437-0_32.
Macrophages represent a broad spectrum of distinct, but closely related tissue-resident immune cells. This presents a major challenge for the study of functional aspects of these cells using classical Cre recombinase-mediated conditional mutagenesis in mice, since single promoter-driven Cre transgenic models often display limited specificity toward their intended target. The advent of CRISPR/Cas9 technology has now provided a time- and cost-effective method to explore the full potential of binary transgenic, intersectional genetics. Specifically, the use of two promoters driving inactive Cre fragments that, when co-expressed, dimerize and only then gain recombinase activity allows the characterization and manipulation of genetically defined tissue macrophage subpopulations. Here, we will elaborate on the use of this protocol to capitalize on these recent technological advances in mouse genetics and discuss their strengths and pitfalls to improve the study of tissue macrophage subpopulations in physiology and pathophysiology.
巨噬细胞代表了广泛的不同但密切相关的组织驻留免疫细胞。这给使用经典的 Cre 重组酶介导的条件性基因敲除在小鼠中研究这些细胞的功能方面带来了重大挑战,因为单个启动子驱动的 Cre 转基因模型通常对其预期的靶标显示出有限的特异性。CRISPR/Cas9 技术的出现为探索双转基因、交叉遗传的全部潜力提供了一种省时、经济有效的方法。具体来说,使用两个启动子驱动不活跃的 Cre 片段,当它们共同表达时,二聚化,只有在那时才获得重组酶活性,从而允许对遗传定义的组织巨噬细胞亚群进行特征描述和操作。在这里,我们将详细阐述如何利用这一方案利用小鼠遗传学的这些最新技术进步,并讨论其优缺点,以改善组织巨噬细胞亚群在生理学和病理生理学中的研究。