Pavošević Fabijan, Tavernelli Ivano, Rubio Angel
Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland.
Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Ave., New York, New York 10010, United States.
J Phys Chem Lett. 2023 Sep 7;14(35):7876-7882. doi: 10.1021/acs.jpclett.3c01935. Epub 2023 Aug 28.
Quantum computers have emerged as a promising platform to simulate strong electron correlation that is crucial to catalysis and photochemistry. However, owing to the choice of a trial wave function employed in the variational quantum eigensolver (VQE) algorithm, accurate simulation is restricted to certain classes of correlated phenomena. Herein, we combine the spin-flip (SF) formalism with the unitary coupled cluster with singles and doubles (UCCSD) method via the quantum equation-of-motion (qEOM) approach to allow for an efficient simulation of a large family of strongly correlated problems. We show that the developed qEOM-SF-UCCSD/VQE method outperforms its UCCSD/VQE counterpart for simulation of the - isomerization of ethylene, and the automerization of cyclobutadiene and the predicted qEOM-SF-UCCSD/VQE barrier heights are in a good agreement with the experimentally determined values. The developments presented herein will further stimulate the investigation of this approach for simulations of other types of correlated/entangled phenomena on quantum computers.
量子计算机已成为一个很有前景的平台,可用于模拟对催化和光化学至关重要的强电子关联。然而,由于变分量子本征求解器(VQE)算法中使用的试探波函数的选择,精确模拟仅限于某些类别的关联现象。在此,我们通过量子运动方程(qEOM)方法将自旋翻转(SF)形式与含单双激发的幺正耦合簇(UCCSD)方法相结合,以实现对一大类强关联问题的高效模拟。我们表明,所开发的qEOM-SF-UCCSD/VQE方法在模拟乙烯的 - 异构化以及环丁二烯的自异构化方面优于其UCCSD/VQE对应方法,并且预测的qEOM-SF-UCCSD/VQE势垒高度与实验测定值高度吻合。本文所展示的进展将进一步激发对该方法在量子计算机上模拟其他类型的关联/纠缠现象的研究。