School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202310913. doi: 10.1002/anie.202310913. Epub 2023 Sep 12.
The chemical synthesis of site-specifically modified transcription factors (TFs) is a powerful method to investigate how post-translational modifications (PTMs) influence TF-DNA interactions and impact gene expression. Among these TFs, Max plays a pivotal role in controlling the expression of 15 % of the genome. The activity of Max is regulated by PTMs; Ser-phosphorylation at the N-terminus is considered one of the key regulatory mechanisms. In this study, we developed a practical synthetic strategy to prepare homogeneous full-length Max for the first time, to explore the impact of Max phosphorylation. We prepared a focused library of eight Max variants, with distinct modification patterns, including mono-phosphorylated, and doubly phosphorylated analogues at Ser2/Ser11 as well as fluorescently labeled variants through native chemical ligation. Through comprehensive DNA binding analyses, we discovered that the phosphorylation position plays a crucial role in the DNA-binding activity of Max. Furthermore, in vitro high-throughput analysis using DNA microarrays revealed that the N-terminus phosphorylation pattern does not interfere with the DNA sequence specificity of Max. Our work provides insights into the regulatory role of Max's phosphorylation on the DNA interactions and sequence specificity, shedding light on how PTMs influence TF function.
特定位点修饰转录因子(TFs)的化学合成是研究翻译后修饰(PTMs)如何影响 TF-DNA 相互作用并影响基因表达的有力方法。在这些 TFs 中,Max 对控制 15%的基因组的表达起着关键作用。Max 的活性受到 PTMs 的调节;N 端丝氨酸磷酸化被认为是关键的调节机制之一。在这项研究中,我们首次开发了一种实用的全合成策略来制备均一的全长 Max,以探索 Max 磷酸化的影响。我们通过天然化学连接制备了一个包含 8 种 Max 变体的聚焦文库,这些变体具有不同的修饰模式,包括 N 端丝氨酸 2/11 单磷酸化和双磷酸化类似物以及荧光标记变体。通过全面的 DNA 结合分析,我们发现磷酸化位置在 Max 的 DNA 结合活性中起着关键作用。此外,使用 DNA 微阵列的体外高通量分析表明,N 端磷酸化模式不会干扰 Max 的 DNA 序列特异性。我们的工作深入了解了 Max 磷酸化对 DNA 相互作用和序列特异性的调节作用,揭示了 PTMs 如何影响 TF 功能。