Nithun Raj V, Yao Yumi Minyi, Harel Omer, Habiballah Shaimaa, Afek Ariel, Jbara Muhammad
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel.
Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
ACS Cent Sci. 2024 Jun 12;10(6):1295-1303. doi: 10.1021/acscentsci.4c00686. eCollection 2024 Jun 26.
Chemical protein synthesis provides a powerful means to prepare novel modified proteins with precision down to the atomic level, enabling an unprecedented opportunity to understand fundamental biological processes. Of particular interest is the process of gene expression, orchestrated through the interactions between transcription factors (TFs) and DNA. Here, we combined chemical protein synthesis and high-throughput screening technology to decipher the role of post-translational modifications (PTMs), e.g., Lys-acetylation on the DNA binding activity of Max TF. We synthesized a focused library of singly, doubly, and triply modified Max variants including site-specifically acetylated and fluorescently tagged analogs. The resulting synthetic analogs were employed to decipher the molecular role of Lys-acetylation on the DNA binding activity and sequence specificity of Max. We provide evidence that the acetylation sites at Lys-31 and Lys-57 significantly inhibit the DNA binding activity of Max. Furthermore, by utilizing high-throughput binding measurements, we assessed the binding activities of the modified Max variants across diverse DNA sequences. Our results indicate that acetylation marks can alter the binding specificities of Max toward certain sequences flanking its consensus binding sites. Our work provides insight into the hidden molecular code of PTM-TFs and DNA interactions, paving the way to interpret gene expression regulation programs.
化学蛋白质合成提供了一种强大的手段,能够精确地制备出原子水平的新型修饰蛋白质,为理解基本生物学过程带来了前所未有的机遇。特别令人感兴趣的是基因表达过程,它是通过转录因子(TFs)与DNA之间的相互作用精心编排的。在此,我们结合化学蛋白质合成和高通量筛选技术,以破译翻译后修饰(PTMs)的作用,例如赖氨酸乙酰化对Max转录因子DNA结合活性的影响。我们合成了一个集中的文库,其中包含单修饰、双修饰和三修饰的Max变体,包括位点特异性乙酰化和荧光标记类似物。所得的合成类似物被用于破译赖氨酸乙酰化对Max的DNA结合活性和序列特异性的分子作用。我们提供的证据表明,赖氨酸31和赖氨酸57处的乙酰化位点显著抑制Max的DNA结合活性。此外,通过利用高通量结合测量,我们评估了修饰后的Max变体对不同DNA序列的结合活性。我们的结果表明,乙酰化标记可以改变Max对其共有结合位点侧翼某些序列的结合特异性。我们的工作为深入了解PTM-TFs与DNA相互作用的隐藏分子密码提供了见解,为解释基因表达调控程序铺平了道路。