Suppr超能文献

零样本伪装物体检测

Zero-Shot Camouflaged Object Detection.

作者信息

Li Haoran, Feng Chun-Mei, Xu Yong, Zhou Tao, Yao Lina, Chang Xiaojun

出版信息

IEEE Trans Image Process. 2023;32:5126-5137. doi: 10.1109/TIP.2023.3308295. Epub 2023 Sep 12.

Abstract

The goal of Camouflaged object detection (COD) is to detect objects that are visually embedded in their surroundings. Existing COD methods only focus on detecting camouflaged objects from seen classes, while they suffer from performance degradation to detect unseen classes. However, in a real-world scenario, collecting sufficient data for seen classes is extremely difficult and labeling them requires high professional skills, thereby making these COD methods not applicable. In this paper, we propose a new zero-shot COD framework (termed as ZSCOD), which can effectively detect the never unseen classes. Specifically, our framework includes a Dynamic Graph Searching Network (DGSNet) and a Camouflaged Visual Reasoning Generator (CVRG). In details, DGSNet is proposed to adaptively capture more edge details for boosting the COD performance. CVRG is utilized to produce pseudo-features that are closer to the real features of the seen camouflaged objects, which can transfer knowledge from seen classes to unseen classes to help detect unseen objects. Besides, our graph reasoning is built on a dynamic searching strategy, which can pay more attention to the boundaries of objects for reducing the influences of background. More importantly, we construct the first zero-shot COD benchmark based on the COD10K dataset. Experimental results on public datasets show that our ZSCOD not only detects the camouflaged object of unseen classes but also achieves state-of-the-art performance in detecting seen classes.

摘要

伪装物体检测(COD)的目标是检测视觉上嵌入其周围环境中的物体。现有的COD方法仅专注于从已见类别中检测伪装物体,而在检测未见类别时性能会下降。然而,在现实场景中,为已见类别收集足够的数据极其困难,并且对其进行标注需要很高的专业技能,从而使得这些COD方法不适用。在本文中,我们提出了一种新的零样本COD框架(称为ZSCOD),它可以有效地检测从未见过的类别。具体来说,我们的框架包括一个动态图搜索网络(DGSNet)和一个伪装视觉推理生成器(CVRG)。详细而言,提出DGSNet是为了自适应地捕捉更多边缘细节以提升COD性能。CVRG用于生成更接近已见伪装物体真实特征的伪特征,它可以将知识从已见类别转移到未见类别以帮助检测未见物体。此外,我们的图推理基于动态搜索策略构建,该策略可以更多地关注物体边界以减少背景的影响。更重要的是,我们基于COD10K数据集构建了首个零样本COD基准。在公共数据集上的实验结果表明,我们的ZSCOD不仅能检测未见类别的伪装物体,而且在检测已见类别时也取得了领先的性能。

相似文献

1
Zero-Shot Camouflaged Object Detection.零样本伪装物体检测
IEEE Trans Image Process. 2023;32:5126-5137. doi: 10.1109/TIP.2023.3308295. Epub 2023 Sep 12.
3
Discriminative context-aware network for camouflaged object detection.用于伪装目标检测的判别式上下文感知网络。
Front Artif Intell. 2024 Mar 27;7:1347898. doi: 10.3389/frai.2024.1347898. eCollection 2024.
4
Feature Aggregation and Propagation Network for Camouflaged Object Detection.用于伪装目标检测的特征聚合与传播网络
IEEE Trans Image Process. 2022;31:7036-7047. doi: 10.1109/TIP.2022.3217695. Epub 2022 Nov 14.
6
ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection.ZoomNeXt:一种用于伪装物体检测的统一协作金字塔网络。
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):9205-9220. doi: 10.1109/TPAMI.2024.3417329. Epub 2024 Nov 6.
10
Collaborative Camouflaged Object Detection: A Large-Scale Dataset and Benchmark.协作式伪装目标检测:一个大规模数据集与基准
IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):18470-18484. doi: 10.1109/TNNLS.2023.3317091. Epub 2024 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验