Suppr超能文献

MAGNet:一种模拟放大镜观察效果的伪装目标检测网络。

MAGNet: A Camouflaged Object Detection Network Simulating the Observation Effect of a Magnifier.

作者信息

Jiang Xinhao, Cai Wei, Zhang Zhili, Jiang Bo, Yang Zhiyong, Wang Xin

机构信息

Xi'an Research Institute of High Technology, Xi'an 710064, China.

出版信息

Entropy (Basel). 2022 Dec 9;24(12):1804. doi: 10.3390/e24121804.

Abstract

In recent years, protecting important objects by simulating animal camouflage has been widely employed in many fields. Therefore, camouflaged object detection (COD) technology has emerged. COD is more difficult to achieve than traditional object detection techniques due to the high degree of fusion of objects camouflaged with the background. In this paper, we strive to more accurately and efficiently identify camouflaged objects. Inspired by the use of magnifiers to search for hidden objects in pictures, we propose a COD network that simulates the observation effect of a magnifier called the MAGnifier Network (MAGNet). Specifically, our MAGNet contains two parallel modules: the ergodic magnification module (EMM) and the attention focus module (AFM). The EMM is designed to mimic the process of a magnifier enlarging an image, and AFM is used to simulate the observation process in which human attention is highly focused on a particular region. The two sets of output camouflaged object maps were merged to simulate the observation of an object by a magnifier. In addition, a weighted key point area perception loss function, which is more applicable to COD, was designed based on two modules to give greater attention to the camouflaged object. Extensive experiments demonstrate that compared with 19 cutting-edge detection models, MAGNet can achieve the best comprehensive effect on eight evaluation metrics in the public COD dataset. Additionally, compared to other COD methods, MAGNet has lower computational complexity and faster segmentation. We also validated the model's generalization ability on a military camouflaged object dataset constructed in-house. Finally, we experimentally explored some extended applications of COD.

摘要

近年来,通过模拟动物伪装来保护重要物体的方法已在许多领域得到广泛应用。因此,伪装目标检测(COD)技术应运而生。由于伪装物体与背景高度融合,COD比传统目标检测技术更难实现。在本文中,我们致力于更准确、高效地识别伪装物体。受使用放大镜在图片中寻找隐藏物体的启发,我们提出了一种COD网络,该网络模拟了放大镜的观察效果,称为放大镜网络(MAGNet)。具体来说,我们的MAGNet包含两个并行模块:遍历放大模块(EMM)和注意力聚焦模块(AFM)。EMM旨在模仿放大镜放大图像的过程,AFM用于模拟人类注意力高度集中在特定区域的观察过程。将两组输出的伪装目标图合并,以模拟放大镜对物体的观察。此外,基于这两个模块设计了一种更适用于COD的加权关键点区域感知损失函数,以更关注伪装物体。大量实验表明,与19种前沿检测模型相比,MAGNet在公共COD数据集中的八项评估指标上能取得最佳综合效果。此外,与其他COD方法相比,MAGNet具有更低的计算复杂度和更快的分割速度。我们还在内部构建的军事伪装目标数据集上验证了该模型的泛化能力。最后,我们通过实验探索了COD的一些扩展应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9276/9778132/f70033ae41f9/entropy-24-01804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验