Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
Department of Integrative Environmental Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
Chemosphere. 2023 Nov;341:139968. doi: 10.1016/j.chemosphere.2023.139968. Epub 2023 Aug 27.
Photoelectrochemical (PEC) water splitting by semiconductor photoanodes is limited by sluggish water oxidation kinetics coupled with serious charge recombinations. In this paper, an effective strategy of TiO nanorod/nanotube nanostructured interface reconstruction, oxygen vacancies and surface modification were employed for stability and efficient charge transport in the photoanodes. Successive anodization and hydrothermal routes were adopted for the TiO NR/NT photoanodes interface reconstruction, followed by Au nanoparticles/clusters (Au NP) loading and hydrogen treatment. This resulted in H-Au-TiO NR/NT photoanodes. A three-dimensional structure of TiO NR on TiO NT/Ti foil nanotubes achieved the highest photocurrent density (1.42 mA cm at 0.3 V vs. Ag/AgCl). The optimal oxygen vacancies and Au NP loading on TiO NR/NT exhibited 1.62 mA cm photocurrent density at 0.3 V vs. Ag/AgCl in H-Au-TiO NR/NT photoelectrode, which is eight times higher than the TiO NT/Ti foil. TRPL analyses confirm the hydrogen treatments to TiO exhibited the emission lifetime (46 ns) in the H-Au-TiO NR/NT photoanodes due to newly formed lower Ti-related trapped electron states and Au NP. The optimum H-Au (4)-TiO NR/NT photoanodes achieved 95% photoelectrochemical (PEC) bacterial inactivation and effective PEC water splitting with (278 and 135.4) μmol of hydrogen and oxygen generation, respectively. In this study, oxygen vacancies combined with gold particles and interface reconstruction provide an innovative way to design effective photoelectrodes.
光阳极的光电化学 (PEC) 水分解受到缓慢的水氧化动力学和严重的电荷复合的限制。在本文中,采用了 TiO 纳米棒/纳米管纳米结构界面重构、氧空位和表面修饰的有效策略,以提高光阳极的稳定性和高效电荷输运。采用连续阳极氧化和水热法对 TiO NR/NT 光阳极的界面进行重构,然后进行 Au 纳米颗粒/簇(Au NP)负载和氢气处理。这导致了 H-Au-TiO NR/NT 光阳极。TiO NR 在 TiO NT/Ti 箔纳米管上的三维结构实现了最高的光电流密度(在 0.3 V 下相对于 Ag/AgCl 为 1.42 mA cm )。最佳氧空位和 Au NP 负载在 H-Au-TiO NR/NT 光电电极中表现出 0.3 V 下相对于 Ag/AgCl 的 1.62 mA cm 的光电流密度,比 TiO NT/Ti 箔高 8 倍。TRPL 分析证实,氢气处理 TiO 表现出发射寿命(46 ns)在 H-Au-TiO NR/NT 光阳极中,由于新形成的较低 Ti 相关捕获电子态和 Au NP。最佳的 H-Au(4)-TiO NR/NT 光阳极实现了 95%的光电化学(PEC)细菌灭活和有效的 PEC 水分解,分别产生(278 和 135.4)μmol 的氢气和氧气。在这项研究中,氧空位与金颗粒结合并进行界面重构,为设计高效光电极提供了一种创新的方法。