Hinz Nico, Stacenko Katrin, Lutz Christian, Schulz Arndt-Peter, Wendlandt Robert
Department of Trauma Surgery, Orthopaedics and Sports Traumatology, BG Trauma Hospital Hamburg, Bergedorfer Strasse 10, Hamburg 21033, Germany.
Swemac Innovation (Germany) GmbH, Faulmannweg 5, Kiel 24148, Germany.
Injury. 2023 Nov;54(11):111009. doi: 10.1016/j.injury.2023.111009. Epub 2023 Aug 23.
Dynamization of proximal femoral nailing by removal of distal interlocking is one of the recommended treatment options for nonunions of femur fractures. However, in certain inter-/subtrochanteric fractures, gliding of the nail along the femoral shaft is blocked by lateral femoral cortical support of the lag screw. For these cases, Biber et al. proposed lateral cortical notching (LCN), in which the supporting lateral bone is removed. This study investigates the biomechanical effect of LCN on gliding of proximal femoral nailing and stress distribution at the bone/implant interface.
In this finite element analysis a three-dimensional model of an unstable intertrochanteric fracture with proximal femoral nailing without distal interlocking was simulated using the FebioStudio software suite. To simulate LCN, the lag screw hole was lengthened to 15.34 mm at the lateral cortex. Displacement of the nail along the femoral shaft axis and von Mises stress distribution were compared between LCN model and standard implantation model.
Displacement of the nail along the femoral shaft axis was higher in the LCN model than in the standard implantation model (0.48 mm vs. 0.07 mm). Highest von Mises stresses of 176-178 MPa at the implant and of 52-81 MPa at the proximal femur were detected. Maximum von Mises stresses of the implant were comparable at all sides, except for a reduced von Mises stress at the lateral inferior side in the LCN model (80 vs. 102 MPa). At the inferior lateral screw hole and the anterior/posterior lateral screw hole maximum von Mises stress was reduced in the LCN model (2 vs. 49 MPa and 52 vs. 81 MPa), whereas the maximum von Mises stress at the inferior medial screw hole was higher in the LCN model than in the standard implantation model (53 vs. 27 MPa).
Lateral cortical notching facilitates gliding of a distally dynamized proximal femoral nail along the femoral shaft axis in intertrochanteric fractures. Additionally, the lack of lateral cortical bone support at the lag screw reduces von Mises stress at the bone/implant interface and thus could lower the risk for implant breakage and peri‑implant fractures.
通过去除远端交锁来实现股骨近端髓内钉动力化是股骨骨折不愈合的推荐治疗选择之一。然而,在某些转子间/转子下骨折中,拉力螺钉的股骨外侧皮质支撑会阻碍髓内钉沿股骨干滑动。针对这些情况,比伯等人提出了外侧皮质开槽(LCN),即去除支撑性的外侧骨。本研究调查了LCN对股骨近端髓内钉滑动以及骨/植入物界面应力分布的生物力学影响。
在本有限元分析中,使用FebioStudio软件套件模拟了一个不稳定转子间骨折采用无远端交锁的股骨近端髓内钉固定的三维模型。为模拟LCN,将拉力螺钉孔在外侧皮质处延长至15.34毫米。比较了LCN模型和标准植入模型中髓内钉沿股骨干轴线的位移以及冯·米塞斯应力分布。
LCN模型中髓内钉沿股骨干轴线的位移高于标准植入模型(0.48毫米对0.07毫米)。检测到植入物处的最高冯·米塞斯应力为176 - 178兆帕,股骨近端为52 - 81兆帕。植入物各侧的最大冯·米塞斯应力相当,除了LCN模型中外侧下方的冯·米塞斯应力降低(80对102兆帕)。在LCN模型中,外侧下方螺钉孔以及前后外侧螺钉孔处的最大冯·米塞斯应力降低(2对49兆帕和52对81兆帕),而内侧下方螺钉孔处的最大冯·米塞斯应力在LCN模型中高于标准植入模型(53对27兆帕)。
外侧皮质开槽有助于在转子间骨折中使远端动力化的股骨近端髓内钉沿股骨干轴线滑动。此外,拉力螺钉处缺乏外侧皮质骨支撑会降低骨/植入物界面的冯·米塞斯应力,从而可能降低植入物断裂和植入物周围骨折的风险。