Suppr超能文献

基于卷积神经网络的乳腺癌诊断模型

Convolutional neural network-based models for diagnosis of breast cancer.

作者信息

Masud Mehedi, Eldin Rashed Amr E, Hossain M Shamim

机构信息

College of Computers and Information Technology, Taif University, Taif, Saudi Arabia.

Chair of Pervasive and Mobile Computing, King Saud University, Riyadh, 11543 Saudi Arabia.

出版信息

Neural Comput Appl. 2022;34(14):11383-11394. doi: 10.1007/s00521-020-05394-5. Epub 2020 Oct 9.

Abstract

Breast cancer is the most prevailing cancer in the world and each year affecting millions of women. It is also the cause of largest number of deaths in women dying in cancers. During the last few years, researchers are proposing different convolutional neural network models in order to facilitate diagnostic process of breast cancer. Convolutional neural networks are showing promising results to classify cancers using image datasets. There is still a lack of standard models which can claim the best model because of unavailability of large datasets that can be used for models' training and validation. Hence, researchers are now focusing on leveraging the transfer learning approach using pre-trained models as feature extractors that are trained over millions of different images. With this motivation, this paper considers eight different fine-tuned pre-trained models to observe how these models classify breast cancers applying on ultrasound images. We also propose a shallow custom convolutional neural network that outperforms the pre-trained models with respect to different performance metrics. The proposed model shows 100% accuracy and achieves 1.0 AUC score, whereas the best pre-trained model shows 92% accuracy and 0.972 AUC score. In order to avoid biasness, the model is trained using the fivefold cross validation technique. Moreover, the model is faster in training than the pre-trained models and requires a small number of trainable parameters. The Grad-CAM heat map visualization technique also shows how perfectly the proposed model extracts important features to classify breast cancers.

摘要

乳腺癌是全球最常见的癌症,每年影响数百万女性。它也是女性癌症死亡人数最多的原因。在过去几年中,研究人员提出了不同的卷积神经网络模型,以促进乳腺癌的诊断过程。卷积神经网络在使用图像数据集对癌症进行分类方面显示出了有前景的结果。由于缺乏可用于模型训练和验证的大型数据集,仍然没有能够声称是最佳模型的标准模型。因此,研究人员现在专注于利用迁移学习方法,使用在数百万张不同图像上训练的预训练模型作为特征提取器。出于这个动机,本文考虑了八种不同的微调预训练模型,以观察这些模型如何对应用于超声图像的乳腺癌进行分类。我们还提出了一个浅层定制卷积神经网络,在不同性能指标方面优于预训练模型。所提出的模型显示出100%的准确率,AUC得分为1.0,而最佳预训练模型的准确率为92%,AUC得分为0.972。为了避免偏差,该模型使用五折交叉验证技术进行训练。此外,该模型在训练时比预训练模型更快,并且需要少量可训练参数。Grad-CAM热图可视化技术还展示了所提出的模型如何完美地提取重要特征来对乳腺癌进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/044d/7545025/cb9d8b97a5d6/521_2020_5394_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验