Suppr超能文献

抗击信息疫情:推进沟通和信任的 4I 框架。

Fighting the infodemic: the 4 i Framework for Advancing Communication and Trust.

机构信息

Johns Hopkins Center for Health Security, 700 E. Pratt Street, Suite 900, Baltimore, MD, 21202, USA.

Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E7527, Baltimore, MD, 21205, USA.

出版信息

BMC Public Health. 2023 Aug 30;23(1):1662. doi: 10.1186/s12889-023-16612-9.

Abstract

BACKGROUND

The proliferation of false and misleading health claims poses a major threat to public health. This ongoing "infodemic" has prompted numerous organizations to develop tools and approaches to manage the spread of falsehoods and communicate more effectively in an environment of mistrust and misleading information. However, these tools and approaches have not been systematically characterized, limiting their utility. This analysis provides a characterization of the current ecosystem of infodemic management strategies, allowing public health practitioners, communicators, researchers, and policy makers to gain an understanding of the tools at their disposal.

METHODS

A multi-pronged search strategy was used to identify tools and approaches for combatting health-related misinformation and disinformation. The search strategy included a scoping review of academic literature; a review of gray literature from organizations involved in public health communications and misinformation/disinformation management; and a review of policies and infodemic management approaches from all U.S. state health departments and select local health departments. A team of annotators labelled the main feature(s) of each tool or approach using an iteratively developed list of tags.

RESULTS

We identified over 350 infodemic management tools and approaches. We introduce the 4 i Framework for Advancing Communication and Trust (4 i FACT), a modified social-ecological model, to characterize different levels of infodemic intervention: informational, individual, interpersonal, and institutional. Information-level strategies included those designed to amplify factual information, fill information voids, debunk false information, track circulating information, and verify, detect, or rate the credibility of information. Individual-level strategies included those designed to enhance information literacy and prebunking/inoculation tools. Strategies at the interpersonal/community level included resources for public health communicators and community engagement approaches. Institutional and structural approaches included resources for journalists and fact checkers, tools for managing academic/scientific literature, resources for infodemic researchers/research, resources for infodemic managers, social media regulation, and policy/legislation.

CONCLUSIONS

The 4 i FACT provides a useful way to characterize the current ecosystem of infodemic management strategies. Recognizing the complex and multifaceted nature of the ongoing infodemic, efforts should be taken to utilize and integrate strategies across all four levels of the modified social-ecological model.

摘要

背景

虚假和误导性健康声明的泛滥对公众健康构成了重大威胁。这种持续不断的“信息疫情”促使许多组织开发工具和方法来管理虚假信息的传播,并在不信任和误导性信息的环境中更有效地进行沟通。然而,这些工具和方法尚未得到系统的描述,限制了它们的实用性。本分析对当前的信息疫情管理策略生态系统进行了特征描述,使公共卫生从业者、传播者、研究人员和政策制定者能够了解可用的工具。

方法

采用多管齐下的搜索策略来识别打击与健康相关的错误信息和虚假信息的工具和方法。搜索策略包括对学术文献进行范围综述;对参与公共卫生传播和错误信息/虚假信息管理的组织的灰色文献进行综述;以及对所有美国州卫生部门和选定的地方卫生部门的政策和信息疫情管理方法进行综述。一个注释团队使用经过迭代开发的标签列表对每个工具或方法的主要特征进行标记。

结果

我们确定了 350 多种信息疫情管理工具和方法。我们引入了 4 i 推进沟通和信任框架(4 i FACT),这是一个经过修改的社会生态模型,用于描述不同层次的信息疫情干预:信息层面、个人层面、人际层面和机构层面。信息层面的策略包括旨在放大事实信息、填补信息空白、揭穿虚假信息、跟踪传播信息以及验证、检测或评估信息可信度的策略。个人层面的策略包括旨在提高信息素养和预劝阻/接种工具的策略。人际/社区层面的策略包括公共卫生传播者的资源和社区参与方法。机构和结构层面的策略包括记者和事实核查员的资源、管理学术/科学文献的工具、信息疫情研究人员/研究的资源、信息疫情管理者的资源、社交媒体监管以及政策/立法。

结论

4 i FACT 为描述当前的信息疫情管理策略生态系统提供了一种有用的方法。认识到正在进行的信息疫情的复杂和多方面性质,应努力在修改后的社会生态模型的所有四个层面利用和整合策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6867/10466697/e10467de1974/12889_2023_16612_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验