Suppr超能文献

FAIR4Health:可查找、可访问、可互操作且可重复使用的数据,以促进健康研究。

FAIR4Health: Findable, Accessible, Interoperable and Reusable data to foster Health Research.

作者信息

Alvarez-Romero Celia, Martínez-García Alicia, Sinaci A Anil, Gencturk Mert, Méndez Eva, Hernández-Pérez Tony, Liperoti Rosa, Angioletti Carmen, Löbe Matthias, Ganapathy Nagarajan, Deserno Thomas M, Almada Marta, Costa Elisio, Chronaki Catherine, Cangioli Giorgio, Cornet Ronald, Poblador-Plou Beatriz, Carmona-Pírez Jonás, Gimeno-Miguel Antonio, Poncel-Falcó Antonio, Prados-Torres Alexandra, Kovacevic Tomi, Zaric Bojan, Bokan Darijo, Hromis Sanja, Djekic Malbasa Jelena, Rapallo Fernández Carlos, Velázquez Fernández Teresa, Rochat Jessica, Gaudet-Blavignac Christophe, Lovis Christian, Weber Patrick, Quintero Miriam, Perez-Perez Manuel M, Ashley Kevin, Horton Laurence, Parra Calderón Carlos Luis

机构信息

Computational Health Informatics Group, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, 41013, Spain.

SRDC Software Research Development and Consultancy Corporation, Ankara, 06800, Turkey.

出版信息

Open Res Eur. 2022 May 31;2:34. doi: 10.12688/openreseurope.14349.2. eCollection 2022.

Abstract

Due to the nature of health data, its sharing and reuse for research are limited by ethical, legal and technical barriers. The FAIR4Health project facilitated and promoted the application of FAIR principles in health research data, derived from the publicly funded health research initiatives to make them Findable, Accessible, Interoperable, and Reusable (FAIR). To confirm the feasibility of the FAIR4Health solution, we performed two pathfinder case studies to carry out federated machine learning algorithms on FAIRified datasets from five health research organizations. The case studies demonstrated the potential impact of the developed FAIR4Health solution on health outcomes and social care research. Finally, we promoted the FAIRified data to share and reuse in the European Union Health Research community, defining an effective EU-wide strategy for the use of FAIR principles in health research and preparing the ground for a roadmap for health research institutions. This scientific report presents a general overview of the FAIR4Health solution: from the FAIRification workflow design to translate raw data/metadata to FAIR data/metadata in the health research domain to the FAIR4Health demonstrators' performance.

摘要

由于健康数据的性质,其用于研究的共享和再利用受到伦理、法律和技术障碍的限制。FAIR4Health项目推动并促进了FAIR原则在健康研究数据中的应用,这些数据源自公共资助的健康研究计划,以使其具有可查找性、可访问性、互操作性和可再利用性(FAIR)。为了确认FAIR4Health解决方案的可行性,我们进行了两项探索性案例研究,以对来自五个健康研究组织的经过FAIR化处理的数据集执行联邦机器学习算法。案例研究证明了所开发的FAIR4Health解决方案对健康结果和社会护理研究的潜在影响。最后,我们推动经过FAIR化处理的数据在欧盟健康研究社区中进行共享和再利用,制定了一项在健康研究中使用FAIR原则的有效的全欧盟范围战略,并为健康研究机构的路线图奠定基础。本科学报告概述了FAIR4Health解决方案:从将原始数据/元数据转换为健康研究领域中的FAIR数据/元数据的FAIR化工作流程设计,到FAIR4Health示范项目的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/10446448/458ac76a3b10/openreseurope-2-16044-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验