Dellorusso Paul V, Proven Melissa A, Calero-Nieto Fernando J, Wang Xiaonan, Mitchell Carl A, Hartmann Felix, Amouzgar Meelad, Favaro Patricia, DeVilbiss Andrew, Swann James W, Ho Theodore T, Zhao Zhiyu, Bendall Sean C, Morrison Sean, Göttgens Berthold, Passegué Emmanuelle
bioRxiv. 2023 Aug 19:2023.08.17.553736. doi: 10.1101/2023.08.17.553736.
Aging of the hematopoietic system promotes various blood, immune and systemic disorders and is largely driven by hematopoietic stem cell (HSC) dysfunction ( ). Autophagy is central for the benefits associated with activation of longevity signaling programs ( ), and for HSC function and response to nutrient stress ( ). With age, a subset of HSCs increases autophagy flux and preserves some regenerative capacity, while the rest fail to engage autophagy and become metabolically overactivated and dysfunctional ( ). However, the signals that promote autophagy in old HSCs and the mechanisms responsible for the increased regenerative potential of autophagy-activated old HSCs remain unknown. Here, we demonstrate that autophagy activation is an adaptive survival response to chronic inflammation in the aging bone marrow (BM) niche ( ). We find that inflammation impairs glucose metabolism and suppresses glycolysis in aged HSCs through Socs3-mediated impairment of AKT/FoxO-dependent signaling. In this context, we show that inflammation-mediated autophagy engagement preserves functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we demonstrate that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glucose uptake and glycolytic flux and significantly improves old HSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset old HSC glycolytic and regenerative capacity.
ONE-SENTENCE SUMMARY: Autophagy compensates for chronic inflammation-induced metabolic deregulation in old HSCs, and its transient modulation can reset old HSC glycolytic and regenerative capacity.
造血系统的老化会引发各种血液、免疫和全身疾病,并且很大程度上是由造血干细胞(HSC)功能障碍驱动的。自噬对于与长寿信号程序激活相关的益处、HSC功能以及对营养应激的反应至关重要。随着年龄的增长,一部分HSC会增加自噬通量并保留一些再生能力,而其余的则无法进行自噬,代谢过度激活并功能失调。然而,促进老年HSC自噬的信号以及自噬激活的老年HSC再生潜力增加的机制仍然未知。在这里,我们证明自噬激活是对衰老骨髓(BM)微环境中慢性炎症的一种适应性生存反应。我们发现炎症会损害葡萄糖代谢并通过Socs3介导的AKT/FoxO依赖性信号传导损伤抑制老年HSC中的糖酵解。在这种情况下,我们表明炎症介导的自噬参与通过使代谢适应糖酵解损伤来维持功能性静止。此外,我们证明通过短期禁食/再喂养模式短暂诱导自噬可使葡萄糖摄取和糖酵解通量正常化,并显著提高老年HSC的再生潜力。我们的结果确定炎症驱动的葡萄糖代谢减退是老年HSC功能障碍的关键驱动因素,并将自噬确立为重置老年HSC糖酵解和再生能力的可靶向节点。
自噬补偿了老年HSC中慢性炎症诱导的代谢失调,其短暂调节可重置老年HSC的糖酵解和再生能力。