Suppr超能文献

CryptoCEN:一种用于揭示参与DNA损伤修复的新蛋白质的共表达网络。

CryptoCEN: A Co-Expression Network for reveals novel proteins involved in DNA damage repair.

作者信息

O'Meara Matthew J, Rapala Jackson R, Nichols Connie B, Alexandre Christina, Billmyre R Blake, Steenwyk Jacob L, Alspaugh J Andrew, O'Meara Teresa R

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.

出版信息

bioRxiv. 2023 Aug 18:2023.08.17.553567. doi: 10.1101/2023.08.17.553567.

Abstract

Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For , a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.

摘要

阐明基因功能是生物学的一个主要目标,在非模式生物中尤为如此。然而,由于分子保守性并不总是反映功能保守性,且基因之间的复杂关系负责编码途径和高阶生物过程,因此这样做变得很复杂。共表达是一种很有前景的预测基因功能的方法,它依赖于这样一个普遍原则:在多种条件下具有相似表达模式的基因可能参与相同的生物过程。例如,一种与模式酵母有很大差异的常见人类真菌病原体,其基因组中约60%的预测基因缺乏功能注释。在这里,我们利用大量公开可用的转录组数据生成了一个共表达网络(CryptoCEN),成功地重现了已知的蛋白质网络,预测了基因功能,并深入了解了影响共表达的原理。我们以100%的预测准确率,利用CryptoCEN鉴定出13个新的DNA损伤反应基因,强调了关联推断法在确定基因功能方面的实用性。总体而言,共表达是揭示基因功能的有力工具,并减少了确定当前注释不足基因功能所需的实验测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3635/10462067/c6ba48201e17/nihpp-2023.08.17.553567v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验