文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种I-F型CRISPR干扰系统揭示了CzcR在调节……多药耐药性中的新作用。 (原文中“of”后面缺少具体内容)

A type I-F CRISPRi system unveils the novel role of CzcR in modulating multidrug resistance of .

作者信息

Chen Shuzhen, Cao Huiluo, Xu Zirui, Huang Jiahui, Liu Zhiqing, Li Ting, Duan Cheng, Wu Weiyan, Wen Yongqi, Zhang Lian-Hui, Xu Zeling

机构信息

Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University , Guangzhou, China.

Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong, China.

出版信息

Microbiol Spectr. 2023 Aug 30;11(5):e0112323. doi: 10.1128/spectrum.01123-23.


DOI:10.1128/spectrum.01123-23
PMID:37646520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10581170/
Abstract

has abundant signaling systems that exquisitely control its antibiotic resistance in response to different environmental cues. Understanding the regulation of antibiotic resistance will provide important implications for precise antimicrobial interventions. However, efficient genetic tools for functional gene characterizations are sometimes not available, particularly, in clinically isolated strains. Here, we established a type I-F CRISPRi (CSYi) system for programmable gene silencing. By incorporating anti-CRISPR proteins, this system was even applicable to bacterial hosts encoding a native type I-F CRISPR-Cas system. With the newly developed gene-silencing system, we revealed that the response regulator CzcR from the zinc (Zn)-responsive two-component system CzcS/CzcR is a repressor of efflux pumps MexAB-OprM and MexGHI-OpmD, which inhibits the expression of both operons by directly interacting with their promoters. Repression of MexAB-OprM consequently increases the susceptibility of to multiple antibiotics such as levofloxacin and amikacin. Together, this study provided a simple approach to study gene functions, which enabled us to unveil the novel role of CzcR in modulating efflux pump genes and multidrug resistance in . IMPORTANCE is a ubiquitous opportunistic pathogen frequently causing chronic infections. In addition to being an important model organism for antibiotic-resistant research, this species is also important for understanding and exploiting CRISPR-Cas systems. In this study, we established a gene-silencing system based on the most abundant type I-F CRISPR-Cas system in this species, which can be readily employed to achieve targeted gene repression in multiple bacterial species. Using this gene-silencing system, the physiological role of Zn and its responsive regulator CzcR in modulating multidrug resistance was unveiled with great convenience. This study not only displayed a new framework to expand the abundant CRISPR-Cas and anti-CRISPR systems for functional gene characterizations but also provided new insights into the regulation of multidrug resistance in and important clues for precise anti-pseudomonal therapies.

摘要

具有丰富的信号系统,可根据不同的环境线索精确控制其抗生素耐药性。了解抗生素耐药性的调控将为精准抗菌干预提供重要启示。然而,用于功能基因表征的高效遗传工具有时并不存在,特别是在临床分离菌株中。在此,我们建立了一种用于可编程基因沉默的I-F型CRISPRi(CSYi)系统。通过整合抗CRISPR蛋白,该系统甚至适用于编码天然I-F型CRISPR-Cas系统的细菌宿主。利用新开发的基因沉默系统,我们发现锌(Zn)响应双组分系统CzcS/CzcR中的响应调节因子CzcR是外排泵MexAB-OprM和MexGHI-OpmD的阻遏物,它通过直接与其启动子相互作用来抑制这两个操纵子的表达。对MexAB-OprM的抑制作用因此增加了对多种抗生素如左氧氟沙星和阿米卡星的敏感性。总之,本研究提供了一种研究基因功能的简单方法,使我们能够揭示CzcR在调节外排泵基因和多重耐药性中的新作用。重要性:铜绿假单胞菌是一种普遍存在的机会致病菌,经常引起慢性感染。除了是抗生素耐药性研究的重要模式生物外,该物种对于理解和利用CRISPR-Cas系统也很重要。在本研究中,我们基于该物种中最丰富的I-F型CRISPR-Cas系统建立了一个基因沉默系统,该系统可很容易地用于在多种细菌物种中实现靶向基因抑制。利用这个基因沉默系统,锌及其响应调节因子CzcR在调节多重耐药性中的生理作用被非常方便地揭示出来。本研究不仅展示了一个扩展丰富的CRISPR-Cas和抗CRISPR系统用于功能基因表征的新框架,还为铜绿假单胞菌多重耐药性的调控提供了新见解以及精准抗假单胞菌治疗的重要线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/9389453b7302/spectrum.01123-23.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/a76b8105ac8d/spectrum.01123-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/e2e3e158ee58/spectrum.01123-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/fb4760577494/spectrum.01123-23.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/cf66b1a2ad82/spectrum.01123-23.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/9389453b7302/spectrum.01123-23.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/a76b8105ac8d/spectrum.01123-23.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/e2e3e158ee58/spectrum.01123-23.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/fb4760577494/spectrum.01123-23.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/cf66b1a2ad82/spectrum.01123-23.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd2/10581170/9389453b7302/spectrum.01123-23.f005.jpg

相似文献

[1]
A type I-F CRISPRi system unveils the novel role of CzcR in modulating multidrug resistance of .

Microbiol Spectr. 2023-8-30

[2]
CzcR Is Essential for Swimming Motility in Pseudomonas aeruginosa during Zinc Stress.

Microbiol Spectr. 2022-12-21

[3]
Activation of CzcS/CzcR during zinc excess regulates copper tolerance and pyochelin biosynthesis of .

Appl Environ Microbiol. 2024-3-20

[4]
Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR.

Arch Iran Med. 2015-2

[5]
The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa.

PLoS One. 2012-5-29

[6]
CpxR Activates MexAB-OprM Efflux Pump Expression and Enhances Antibiotic Resistance in Both Laboratory and Clinical nalB-Type Isolates of Pseudomonas aeruginosa.

PLoS Pathog. 2016-10-13

[7]
Two Regulators, PA3898 and PA2100, Modulate the Pseudomonas aeruginosa Multidrug Resistance MexAB-OprM and EmrAB Efflux Pumps and Biofilm Formation.

Antimicrob Agents Chemother. 2018-11-26

[8]
Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa.

BMC Complement Altern Med. 2017-8-14

[9]
Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa.

Arch Microbiol. 2016-8

[10]
CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa.

J Biol Chem. 2004-3-5

引用本文的文献

[1]
Harnessing bacterial immunity: CRISPR-Cas system as a versatile tool in combating pathogens and revolutionizing medicine.

Front Cell Infect Microbiol. 2025-5-30

[2]
An antibiotic-responsive regulator orchestrates chronic-to-acute virulence switch in Pseudomonas aeruginosa.

Nucleic Acids Res. 2025-5-22

[3]
Antimicrobial Peptides: A Promising Solution to the Rising Threat of Antibiotic Resistance.

Pharmaceutics. 2024-12-2

[4]
CzcR-dependent reduction of catalase gene expression and induction of catalase activity in Pseudomonas aeruginosa during zinc excess.

BMC Microbiol. 2024-11-29

[5]
From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review.

Naunyn Schmiedebergs Arch Pharmacol. 2025-3

[6]
Native CRISPR-Cas-based programmable multiplex gene repression in Klebsiella variicola.

Biotechnol Lett. 2024-12

[7]
Metal-regulated antibiotic resistance and its implications for antibiotic therapy.

Microb Biotechnol. 2024-7

[8]
Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications.

Microb Biotechnol. 2024-5

[9]
Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation.

mSphere. 2024-4-23

[10]
Activation of CzcS/CzcR during zinc excess regulates copper tolerance and pyochelin biosynthesis of .

Appl Environ Microbiol. 2024-3-20

本文引用的文献

[1]
CzcR Is Essential for Swimming Motility in Pseudomonas aeruginosa during Zinc Stress.

Microbiol Spectr. 2022-12-21

[2]
Genome characterization of a uropathogenic isolate PA_HN002 with cyclic di-GMP-dependent hyper-biofilm production.

Front Cell Infect Microbiol. 2022

[3]
A versatile Cas12k-based genetic engineering toolkit (C12KGET) for metabolic engineering in genetic manipulation-deprived strains.

Nucleic Acids Res. 2022-8-26

[4]
Type I-F CRISPR-PAIR platform for multi-mode regulation to boost extracellular electron transfer in .

iScience. 2022-5-30

[5]
Structural and mechanistic insights into the inhibition of type I-F CRISPR-Cas system by anti-CRISPR protein AcrIF23.

J Biol Chem. 2022-7

[6]
A transferrable and integrative type I-F Cascade for heterologous genome editing and transcription modulation.

Nucleic Acids Res. 2021-9-20

[7]
Genome-Wide Mapping Reveals Complex Regulatory Activities of BfmR in .

Microorganisms. 2021-2-25

[8]
Repurposing the Endogenous Type I-E CRISPR/Cas System for Gene Repression in WSH-003.

ACS Synth Biol. 2021-1-15

[9]
Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements.

Nat Commun. 2020-11-6

[10]
Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems.

Annu Rev Biochem. 2020-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索