Suppr超能文献

基于生物学启发的元启发式算法与随机森林相结合的新方法,以提高洪水易感性制图的能力。

A new approach based on biology-inspired metaheuristic algorithms in combination with random forest to enhance the flood susceptibility mapping.

机构信息

Dept. of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Republic of Korea.

出版信息

J Environ Manage. 2023 Nov 1;345:118790. doi: 10.1016/j.jenvman.2023.118790. Epub 2023 Aug 28.

Abstract

Flash floods are one of the worst natural disasters, causing massive economic losses and many deaths. Creating a flood susceptibility map (FSM) that pinpoints the areas most at risk of flooding is a crucial non-structural solution for managing floods. This study aimed to assess the efficacy of combinations of the random forest (RF) model with three biology-inspired metaheuristic algorithms, namely invasive weed optimization (IWO), slime mould algorithm (SMA), and satin bowerbird optimization (SBO), for flood susceptibility mapping in Estahban town, Iran. Initially, synthetic-aperture radar (SAR) (Sentinel-1) and optical (Landsat-8) satellite images were integrated to monitor the flooded areas during the July 2022 monsoon in the study area. A dataset of 509 flood occurrence points was created to identify flood-prone areas using remote sensing techniques, considering the monitored flood areas. The dataset also included twelve flood-related criteria: topography, land cover, and climate. The holdout method was employed for modeling, with a ratio of 70:30 used for the train/test split. Data pre-processing techniques were conducted to improve model performance, including determining criteria importance and addressing multicollinearity issues using certainty factor (CF), multicollinearity, and information gain ratio (IGR) methods. Then FSM was prepared using RF, RF-IWO, RF-SBO, and RF-SMA models. The findings of this research revealed that the RF-IWO model was the best predictive model of flood susceptibility modeling, with root-mean-square-error (RMSE) (0.211 and 0.0.27), mean-absolute-error (MAE) (0.103 and 0.15), and coefficient-of-determination (R) (0.821 and 0.707) in the training and testing phases, respectively. Receiver operating characteristic (ROC) curve analysis of FSM revealed that the most accurate models were the RF-IWO (area under the curve (AUC) = 0.983), RF-SBO (AUC = 0.979), RF-SMA (AUC = 0.963), and RF (AUC = 0.959), respectively. Integrating biology-inspired computing algorithms with machine learning algorithms presents a novel approach to enhancing the accuracy of FSMs.

摘要

山洪暴发是最严重的自然灾害之一,会造成巨大的经济损失和许多人员死亡。制作洪水易发性图(FSM)以确定最容易发生洪水的区域是管理洪水的重要非结构性解决方案。本研究旨在评估随机森林(RF)模型与三种生物启发式元启发式算法(即入侵杂草优化(IWO)、粘菌算法(SMA)和缎带园丁鸟优化(SBO))相结合在伊朗 Estahban 镇进行洪水易发性图绘制的效果。最初,综合孔径雷达(SAR)(Sentinel-1)和光学(Landsat-8)卫星图像被整合以监测研究区域 2022 年 7 月季风期间的洪水区域。使用遥感技术创建了 509 个洪水发生点数据集,以识别易受洪水影响的地区,同时考虑到监测到的洪水区域。该数据集还包括 12 个与洪水相关的标准:地形、土地覆盖和气候。采用保持法进行建模,训练/测试分割比例为 70:30。进行了数据预处理技术,以提高模型性能,包括使用确定性因子(CF)、多重共线性和信息增益比(IGR)方法确定标准重要性和解决多重共线性问题。然后使用 RF、RF-IWO、RF-SBO 和 RF-SMA 模型准备洪水易发性图(FSM)。研究结果表明,RF-IWO 模型是洪水易发性建模的最佳预测模型,在训练和测试阶段的均方根误差(RMSE)(0.211 和 0.0.27)、平均绝对误差(MAE)(0.103 和 0.15)和确定系数(R)(0.821 和 0.707)分别。洪水易发性图(FSM)的接收者操作特征(ROC)曲线分析表明,最准确的模型是 RF-IWO(曲线下面积(AUC)= 0.983)、RF-SBO(AUC = 0.979)、RF-SMA(AUC = 0.963)和 RF(AUC = 0.959)。将生物启发式计算算法与机器学习算法相结合,为提高洪水易发性图(FSM)的准确性提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验