Suppr超能文献

通过集合机器学习增强伊朗西部 Gamasyab 流域的洪水测绘。

Enhancing flood mapping through ensemble machine learning in the Gamasyab watershed, Western Iran.

机构信息

Department of Natural Engineering, Faculty of Natural Resources, Malayer University, Malayer, Iran.

Department of Range and Watershed Management and Dept. of Water Eng. and Environment, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, 1144, Guilan, Iran.

出版信息

Environ Sci Pollut Res Int. 2024 Aug;31(38):50427-50442. doi: 10.1007/s11356-024-34501-5. Epub 2024 Aug 2.

Abstract

Floods are among the natural hazards that have seen a rapid increase in frequency in recent decades. The damage caused by floods, including human and financial losses, poses a serious threat to human life. This study evaluates two machine learning (ML) techniques for flood susceptibility mapping (FSM) in the Gamasyab watershed in Iran. We utilized random forest (RF), support vector machine (SVM), ensemble models, and a geographic information system (GIS) to predict FSM. The application of these models involved 10 effective factors in flooding, as well as 82 flood locations integrated into the GIS. The SVM and RF models were trained and tested, followed by the implementation of resampling techniques (RT) using bootstrap and subsampling methods in three repetitions. The results highlighted the importance of elevation, slope, and precipitation as primary factors influencing flood occurrence. Additionally, the ensemble model outperformed both the RF and SVM models, achieving an area under the curve (AUC) of 0.9, a correlation coefficient (COR) of 0.79, a true skill statistic (TSS) of 0.83, and a standard deviation (SD) of 0.71 in the test phase. The tested models were adapted to available input data to map the FSM across the study watershed. These findings underscore the potential of integrating an ensemble model with GIS as an effective tool for flood susceptibility mapping.

摘要

洪水是近年来频率迅速增加的自然灾害之一。洪水造成的破坏,包括人员和经济损失,对人类生命构成严重威胁。本研究评估了两种机器学习 (ML) 技术在伊朗 Gamasyab 流域的洪水易感性制图 (FSM)。我们利用随机森林 (RF)、支持向量机 (SVM)、集成模型和地理信息系统 (GIS) 来预测 FSM。这些模型的应用涉及到 10 个洪水影响的有效因素,以及集成到 GIS 中的 82 个洪水地点。对 SVM 和 RF 模型进行了训练和测试,然后在三个重复中使用 bootstrap 和子采样方法实施了重采样技术 (RT)。结果强调了海拔、坡度和降水作为影响洪水发生的主要因素的重要性。此外,集成模型在测试阶段的曲线下面积 (AUC) 为 0.9、相关系数 (COR) 为 0.79、真实技能统计量 (TSS) 为 0.83 和标准偏差 (SD) 为 0.71,表现优于 RF 和 SVM 模型。在测试阶段的曲线下面积 (AUC) 为 0.9、相关系数 (COR) 为 0.79、真实技能统计量 (TSS) 为 0.83 和标准偏差 (SD) 为 0.71,表现优于 RF 和 SVM 模型。在测试阶段的曲线下面积 (AUC) 为 0.9、相关系数 (COR) 为 0.79、真实技能统计量 (TSS) 为 0.83 和标准偏差 (SD) 为 0.71,表现优于 RF 和 SVM 模型。对测试模型进行了适应,以便在整个研究流域内进行 FSM 制图。这些发现强调了将集成模型与 GIS 集成作为洪水易感性制图的有效工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验