Zhao Xining, Wang Jichao, Ding Yelu, Gao Xiaodong, Li Changjian, Huang Hongwei, Gao Xuerui
Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China.
College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Sci Data. 2025 Jul 10;12(1):1190. doi: 10.1038/s41597-025-05529-0.
Accurate and timely information on planting intensity and crop rotation is essential for guiding agricultural policies and ensuring food security. However, reliable and up-to-date maps for major crops-wheat, maize, rapeseed, soybean, and potatoes-are lacking in the Loess Plateau, a key grain-producing region in western China. To address this gap, this study aims to generate a high-resolution (10 m) crop planting pattern dataset for the Loess Plateau from 2018 to 2022. The research methodology involved four key steps: (1) Enhancing the sample dataset using phenological indices and the Dynamic Time Warping (DTW) algorithm; (2) Identifying crop planting intensity based on phenological growth curves; (3) Developing independent random forest classifiers tailored to agricultural climate zones; and (4) Constructing an optimal feature subset for crop classification. The resulting maps demonstrated high overall accuracies (OA) is greater than 0.81, with satellite-based estimates showing strong agreement with municipal statistical data (R ≥ 0.60). These results provide crucial insights for the management of agricultural ecosystems in the Loess Plateau and can support more informed decision-making in regional agriculture.
准确及时的种植强度和作物轮作信息对于指导农业政策和确保粮食安全至关重要。然而,中国西部关键粮食产区黄土高原缺乏主要作物(小麦、玉米、油菜籽、大豆和马铃薯)可靠且最新的地图。为填补这一空白,本研究旨在生成2018年至2022年黄土高原高分辨率(10米)作物种植模式数据集。研究方法包括四个关键步骤:(1)使用物候指数和动态时间规整(DTW)算法增强样本数据集;(2)基于物候生长曲线确定作物种植强度;(3)开发针对农业气候区的独立随机森林分类器;(4)构建用于作物分类的最优特征子集。生成的地图总体精度较高(OA大于0.81),基于卫星的估计与市级统计数据显示出很强的一致性(R≥0.60)。这些结果为黄土高原农业生态系统管理提供了关键见解,并可为区域农业提供更明智的决策支持。