Suppr超能文献

Development and derivation of bacteremia prediction model in patients with hepatobiliary infection.

作者信息

Choi Jung Won, Chon Sung-Bin, Hwang Sung Yeon, Shin Tae Gun, Park Jong Eun, Kim Kyuseok

机构信息

Department of Emergency Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-Do, Republic of Korea.

Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

出版信息

Am J Emerg Med. 2023 Nov;73:102-108. doi: 10.1016/j.ajem.2023.08.015. Epub 2023 Aug 11.

Abstract

INTRODUCTION

Hepatobiliary infections are common in the emergency department (ED), and the mortality rate for this condition is high. A suitable bacteremia prediction model would support prompt identification of bacteremia and appropriate management of hepatobiliary infections in the ED. Therefore, we attempted to produce a bacteremia prediction model with both internal and external validation for hepatobiliary infections in the ED.

METHODS

Patients with hepatobiliary infection were extracted from retrospective cohort databases of two tertiary hospitals from January 2018 to December 2019 and from January 2016 to December 2019, respectively. Independent risk factors were determined using multivariable logistic regression in a developmental cohort. We assigned a weighted value to predictive factors and developed a prediction model, which was validated both internally and externally. We assessed discrimination using the area under the receiver operating characteristics curve (AUC).

RESULTS

One hospital cohort of 1568 patients was randomly divided into a developmental group of 927 patients (60%) and an internal validation group of 641 patients (40%), and 736 people from the other hospital cohort were used for external validation. Bacteremia rates were 20.5%, 18.1%, and 23.1% in the developmental, internal, and external validation cohorts, respectively. Nine significant factors were used for predicting bacteremia, including age, three vital signs, and five laboratory tests. After applying our bacteremia prediction rule to the validation cohort, 56.5% and 53.8% of the internal and external validation groups were classified as low-risk bacteremia groups (bacteremia rates: 8.6% and 13.9%, respectively). The AUCs were 0.727 (95% confidence interval [CI]: 0.686-0.767), 0.730 (95% CI: 0.679-0.781), and 0.715 (95% CI: 0.672-0.758) for the developmental, internal, and external validation cohorts, respectively. The sensitivity and specificity for internal validation/external validation was 73.2%/67.6% and 63.0%/60.2%, respectively.

CONCLUSION

A bacteremia prediction model for hepatobiliary infection might be useful to predict the risk of bacteremia. It might also reduce the need for blood culture in low-risk patients.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验