Suppr超能文献

通过整合连接组学和转录组学揭示大脑连接的决定因素。

Brain wiring determinants uncovered by integrating connectomes and transcriptomes.

机构信息

Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Curr Biol. 2023 Sep 25;33(18):3998-4005.e6. doi: 10.1016/j.cub.2023.08.020. Epub 2023 Aug 29.

Abstract

Advances in brain connectomics have demonstrated the extraordinary complexity of neural circuits. Developing neurons encounter the axons and dendrites of many different neuron types and form synapses with only a subset of them. During circuit assembly, neurons express cell-type-specific repertoires comprising many cell adhesion molecules (CAMs) that can mediate interactions between developing neurites. Many CAM families have been shown to contribute to brain wiring in different ways. It has been challenging, however, to identify receptor-ligand pairs directly matching neurons with their synaptic targets. Here, we integrated the synapse-level connectome of the neural circuit with the developmental expression patterns and binding specificities of CAMs on pre- and postsynaptic neurons in the Drosophila visual system. To overcome the complexity of neural circuits, we focus on pairs of genetically related neurons that make differential wiring choices. In the motion detection circuit, closely related subtypes of T4/T5 neurons choose between alternative synaptic targets in adjacent layers of neuropil. This choice correlates with the matching expression in synaptic partners of different receptor-ligand pairs of the Beat and Side families of CAMs. Genetic analysis demonstrated that presynaptic Side-II and postsynaptic Beat-VI restrict synaptic partners to the same layer. Removal of this receptor-ligand pair disrupts layers and leads to inappropriate targeting of presynaptic sites and postsynaptic dendrites. We propose that different Side/Beat receptor-ligand pairs collaborate with other recognition molecules to determine wiring specificities in the fly brain. Combining transcriptomes, connectomes, and protein interactome maps allow unbiased identification of determinants of brain wiring.

摘要

脑连接组学的进展展示了神经回路的非凡复杂性。发育中的神经元会遇到许多不同类型神经元的轴突和树突,并与其中的一部分形成突触。在回路组装过程中,神经元表达特定细胞类型的 repertoire,其中包含许多细胞粘附分子(CAMs),这些分子可以介导发育中的神经突之间的相互作用。已经证明许多 CAM 家族以不同的方式有助于大脑布线。然而,直接确定与突触靶标相匹配的神经元的受体 - 配体对一直具有挑战性。在这里,我们将神经网络的突触水平连接组与果蝇视觉系统中突触前和突触后神经元上 CAM 的发育表达模式和结合特异性整合在一起。为了克服神经网络的复杂性,我们专注于具有不同布线选择的遗传相关神经元对。在运动检测回路中,密切相关的 T4/T5 神经元亚型在神经胶质层的相邻层之间选择替代的突触靶标。这种选择与不同受体 - 配体对 Beat 和 Side CAM 家族的匹配表达相关。遗传分析表明,突触前 Side-II 和突触后 Beat-VI 将突触伙伴限制在同一层。去除这个受体 - 配体对会破坏层状结构,并导致突触前位点和突触后树突的靶向不当。我们提出,不同的 Side/Beat 受体 - 配体对与其他识别分子合作,以确定果蝇大脑中的布线特异性。结合转录组、连接组和蛋白质相互作用图谱,可以非偏倚地鉴定大脑布线的决定因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验