Schlegel Philipp, Yin Yijie, Bates Alexander S, Dorkenwald Sven, Eichler Katharina, Brooks Paul, Han Daniel S, Gkantia Marina, Dos Santos Marcia, Munnelly Eva J, Badalamente Griffin, Serratosa Capdevila Laia, Sane Varun A, Fragniere Alexandra M C, Kiassat Ladann, Pleijzier Markus W, Stürner Tomke, Tamimi Imaan F M, Dunne Christopher R, Salgarella Irene, Javier Alexandre, Fang Siqi, Perlman Eric, Kazimiers Tom, Jagannathan Sridhar R, Matsliah Arie, Sterling Amy R, Yu Szi-Chieh, McKellar Claire E, Costa Marta, Seung H Sebastian, Murthy Mala, Hartenstein Volker, Bock Davi D, Jefferis Gregory S X E
Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
Nature. 2024 Oct;634(8032):139-152. doi: 10.1038/s41586-024-07686-5. Epub 2024 Oct 2.
The fruit fly Drosophila melanogaster has emerged as a key model organism in neuroscience, in large part due to the concentration of collaboratively generated molecular, genetic and digital resources available for it. Here we complement the approximately 140,000 neuron FlyWire whole-brain connectome with a systematic and hierarchical annotation of neuronal classes, cell types and developmental units (hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the partial hemibrain connectome, and 4,581 are new types, mostly from brain regions outside the hemibrain subvolume. Although nearly all hemibrain neurons could be matched morphologically in FlyWire, about one-third of cell types proposed for the hemibrain could not be reliably reidentified. We therefore propose a new definition of cell type as groups of cells that are each quantitatively more similar to cells in a different brain than to any other cell in the same brain, and we validate this definition through joint analysis of FlyWire and hemibrain connectomes. Further analysis defined simple heuristics for the reliability of connections between brains, revealed broad stereotypy and occasional variability in neuron count and connectivity, and provided evidence for functional homeostasis in the mushroom body through adjustments of the absolute amount of excitatory input while maintaining the excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open-source toolchain for brain-scale comparative connectomics.
果蝇黑腹果蝇已成为神经科学中的关键模式生物,这在很大程度上得益于为其提供的大量合作生成的分子、遗传和数字资源。在这里,我们用神经元类别、细胞类型和发育单元(半谱系)的系统分层注释,对约140,000个神经元的果蝇全脑连接组进行补充。在8453种注释的细胞类型中,3643种先前已在部分半脑连接组中提出,4581种是新类型,大多来自半脑子体积之外的脑区。尽管几乎所有半脑神经元在FlyWire中都能在形态上匹配,但为半脑提出的细胞类型中约有三分之一无法可靠地重新识别。因此,我们提出了一种新的细胞类型定义,即细胞群体,其中每个细胞与不同大脑中的细胞在数量上比与同一大脑中的任何其他细胞更相似,并且我们通过对FlyWire和半脑连接组的联合分析验证了这一定义。进一步的分析定义了大脑之间连接可靠性的简单启发式方法,揭示了神经元数量和连接性的广泛刻板性和偶尔的变异性,并通过在维持兴奋/抑制比的同时调整兴奋性输入的绝对量,为蘑菇体中的功能稳态提供了证据。我们的工作定义了果蝇大脑的共识细胞类型图谱,并为脑尺度比较连接组学提供了一个智力框架和开源工具链。