Whole-brain annotation and multi-connectome cell typing of Drosophila.

作者信息

Schlegel Philipp, Yin Yijie, Bates Alexander S, Dorkenwald Sven, Eichler Katharina, Brooks Paul, Han Daniel S, Gkantia Marina, Dos Santos Marcia, Munnelly Eva J, Badalamente Griffin, Serratosa Capdevila Laia, Sane Varun A, Fragniere Alexandra M C, Kiassat Ladann, Pleijzier Markus W, Stürner Tomke, Tamimi Imaan F M, Dunne Christopher R, Salgarella Irene, Javier Alexandre, Fang Siqi, Perlman Eric, Kazimiers Tom, Jagannathan Sridhar R, Matsliah Arie, Sterling Amy R, Yu Szi-Chieh, McKellar Claire E, Costa Marta, Seung H Sebastian, Murthy Mala, Hartenstein Volker, Bock Davi D, Jefferis Gregory S X E

机构信息

Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.

Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.

出版信息

Nature. 2024 Oct;634(8032):139-152. doi: 10.1038/s41586-024-07686-5. Epub 2024 Oct 2.

Abstract

The fruit fly Drosophila melanogaster has emerged as a key model organism in neuroscience, in large part due to the concentration of collaboratively generated molecular, genetic and digital resources available for it. Here we complement the approximately 140,000 neuron FlyWire whole-brain connectome with a systematic and hierarchical annotation of neuronal classes, cell types and developmental units (hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the partial hemibrain connectome, and 4,581 are new types, mostly from brain regions outside the hemibrain subvolume. Although nearly all hemibrain neurons could be matched morphologically in FlyWire, about one-third of cell types proposed for the hemibrain could not be reliably reidentified. We therefore propose a new definition of cell type as groups of cells that are each quantitatively more similar to cells in a different brain than to any other cell in the same brain, and we validate this definition through joint analysis of FlyWire and hemibrain connectomes. Further analysis defined simple heuristics for the reliability of connections between brains, revealed broad stereotypy and occasional variability in neuron count and connectivity, and provided evidence for functional homeostasis in the mushroom body through adjustments of the absolute amount of excitatory input while maintaining the excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open-source toolchain for brain-scale comparative connectomics.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e54/11446831/a9a06f06d53f/41586_2024_7686_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索