Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, USA.
Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, USA.
Tuberculosis (Edinb). 2024 Jul;147:102399. doi: 10.1016/j.tube.2023.102399. Epub 2023 Aug 24.
Tuberculosis is a leading cause of infectious death worldwide, with almost a fourth of the world's population latently infected with its causative agent, Mycobacterium tuberculosis. Current diagnostic methods are insufficient to differentiate between healthy and latently infected populations. Here, we used a machine learning approach to analyze publicly available proteomic data from saliva and serum in Ethiopia's healthy, latent TB (LTBI) and active TB (ATBI) people. Our analysis discovered a profile of six proteins, Mast Cell Expressed Membrane Protein-1, Hemopexin, Lamin A/C, Small Proline Rich Protein 2F, Immunoglobulin Kappa Variable 4-1, and Voltage Dependent Anion Channel 2 that can precisely differentiate between the healthy and latently infected populations. This data suggests that a combination of six host proteins can serve as accurate biomarkers to diagnose latent infection. This is important for populations living in high-risk areas as it may help in the surveillance and prevention of severe disease.
结核病是全球导致感染死亡的主要原因,全世界近四分之一的人口感染了结核分枝杆菌这种病原体。目前的诊断方法不足以区分健康人群和潜伏感染人群。在这里,我们使用机器学习方法分析了来自埃塞俄比亚健康人群、潜伏性结核感染(LTBI)人群和活动性结核感染(ATBI)人群的唾液和血清中的公开蛋白质组数据。我们的分析发现了一组由六种蛋白质组成的特征,即肥大细胞表达的膜蛋白-1、触珠蛋白、核纤层蛋白 A/C、富含脯氨酸的小蛋白 2F、免疫球蛋白κ可变 4-1 和电压依赖性阴离子通道 2,这些蛋白质可以精确地区分健康人群和潜伏感染人群。这一数据表明,六种宿主蛋白的组合可以作为准确的生物标志物来诊断潜伏性感染。对于生活在高危地区的人群来说,这一点非常重要,因为它可能有助于对严重疾病进行监测和预防。