Omrani Maryam, Ghodousi Arash, Cirillo Daniela Maria
Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Università Vita Salute San Raffaele, Milan, Italy.
Front Microbiol. 2025 May 26;16:1546770. doi: 10.3389/fmicb.2025.1546770. eCollection 2025.
Tuberculosis (TB) remains a major global health challenge, contributing substantially to morbidity and mortality worldwide. The progression from (Mtb) infection to active disease involves a complex interplay between host immune responses and Mtb's ability to evade them. However, current diagnostic tools, such as interferon-gamma release assays (IGRAs) and tuberculin skin tests (TSTs), have limited ability to distinguish between different stages of TB or to predict the progression from infection to active disease. In this study, we performed an integrative analysis of 324 previously acquired blood transcriptome samples from TB patients, TB contacts, and controls across diverse geographical regions. Differential gene expression analysis revealed distinct transcriptomic signatures in TB patients, highlighting dysregulated pathways related to immune responses, antimicrobial peptides, and extracellular matrix organization. Using machine learning, we identified a 99-transcript signature that accurately distinguished TB patients from controls, demonstrated strong predictive performance across different cohorts, and identified potential progressors or subclinical cases. Validation in an independent dataset comprising 90 TB patients and 20 healthy controls confirmed the robustness of the 10-gene signature (BATF2, FAM20A, FBLN2, AK5, VAMP5, MMP8, KLHDC8B, LINC00402, DEFA3, and GBP6), achieving high area under the curve (AUC) values in both receiver operating characteristic (ROC) and precision-recall analyses. This 10-gene signature offers promising candidates for further validation and the development of diagnostic and prognostic tools, supporting global efforts to improve TB detection and risk stratification.
结核病(TB)仍然是一项重大的全球卫生挑战,在全球范围内对发病率和死亡率有重大影响。从结核分枝杆菌(Mtb)感染发展到活动性疾病涉及宿主免疫反应与Mtb逃避这些反应能力之间的复杂相互作用。然而,目前的诊断工具,如干扰素-γ释放试验(IGRAs)和结核菌素皮肤试验(TSTs),区分结核病不同阶段或预测从感染到活动性疾病进展的能力有限。在本研究中,我们对来自不同地理区域的324份先前采集的结核病患者、结核病接触者和对照者的血液转录组样本进行了综合分析。差异基因表达分析揭示了结核病患者独特的转录组特征,突出了与免疫反应、抗菌肽和细胞外基质组织相关的失调途径。通过机器学习,我们确定了一个由99个转录本组成的特征,该特征能准确区分结核病患者与对照者,在不同队列中表现出强大的预测性能,并识别出潜在的疾病进展者或亚临床病例。在一个包含90名结核病患者和20名健康对照者的独立数据集中进行验证,证实了由10个基因组成的特征(BATF2、FAM20A、FBLN2、AK5、VAMP5、MMP8、KLHDC8B、LINC00402、DEFA3和GBP6)的稳健性,在受试者工作特征(ROC)和精确召回分析中均获得了较高的曲线下面积(AUC)值。这一由10个基因组成的特征为进一步验证以及开发诊断和预后工具提供了有前景的候选基因,支持全球改善结核病检测和风险分层的努力。