Suppr超能文献

PLGA 基纳米递药系统在兽医学中递送氟苯尼考:改善其性能并克服其部分局限性。

Delivery of florfenicol in veterinary medicine through a PLGA-based nanodelivery system: improving its performance and overcoming some of its limitations.

机构信息

Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.

Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.

出版信息

Vet Res Commun. 2024 Feb;48(1):259-269. doi: 10.1007/s11259-023-10205-y. Epub 2023 Aug 30.

Abstract

As is the case with other veterinary antibiotics, florfenicol (FFC) faces certain limitations, such as low solubility in water, or the fact that it is reported to interfere with the immune response after some immunoprofilactic actions in livestock. Aiming to improve its efficacy and overall performance, FFC was loaded into a polymeric nanobased delivery system by succesfully using the emulsion-evaporation technique. The poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with FFC were characterized in terms of size (101 ± 0.52 nm), zeta potential (26.80 ± 1.30 mV) and poly-dispersity index (0.061 ± 0.019). The achieved loading was 2.24 μg FFC/mg of NPs, with an entrapment efficiency of 7.9%. The antimicrobial effect, the anti-biofilm formation and the cytotoxicity properties of the NPs were evaluated. The results indicated a MIC decreased by ~97.13% for S. aureus, 99.33% for E.coli and 64.1% for P. aeruginosa when compared to free FFC. The minimum inhibitory concentration (MIC) obtained indicated the potential for using a significantly lower dose of florfenicol. The delivery system produced biofilm inhibition while showing no cytotoxic effects when tested on porcine primary fibroblasts and horse mesenchymal stem cells. These findings suggest that florfenicol can be improved and formulations optimized for use in veterinary medicine through its incorporation into a nanobased delivery system designed to release in a controlled manner over time.

摘要

与其他兽医抗生素一样,氟苯尼考(FFC)也存在一定的局限性,例如在水中的溶解度低,或者据报道它会干扰某些牲畜免疫预防措施后的免疫反应。为了提高其疗效和整体性能,通过成功使用乳液蒸发技术,FFC 被装载到聚合物纳米递药系统中。载有 FFC 的聚(乳酸-共-乙醇酸)(PLGA)纳米颗粒的特征在于粒径(101±0.52nm)、Zeta 电位(26.80±1.30mV)和多分散指数(0.061±0.019)。实现的载药量为 2.24μg FFC/mg NPs,包封效率为 7.9%。评估了 NPs 的抗菌效果、抗生物膜形成和细胞毒性特性。结果表明,与游离 FFC 相比,金黄色葡萄球菌的 MIC 降低了约 97.13%,大肠杆菌的 MIC 降低了 99.33%,铜绿假单胞菌的 MIC 降低了 64.1%。所获得的最小抑菌浓度(MIC)表明,使用显著较低剂量的氟苯尼考是有潜力的。该递药系统产生了生物膜抑制作用,同时在对猪原代成纤维细胞和马间充质干细胞进行测试时没有显示出细胞毒性作用。这些发现表明,通过将氟苯尼考纳入旨在随时间控制释放的纳米递药系统,可以对其进行改进并优化其在兽医医学中的制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验