Velásquez Felipe, Frazao Mateus, Diez Arturo, Villegas Felipe, Álvarez-Bidwell Marcelo, Rivas-Pardo J Andrés, Vallejos-Vidal Eva, Reyes-López Felipe, Toro-Ascuy Daniela, Ahumada Manuel, Reyes-Cerpa Sebastián
Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
Nanomaterials (Basel). 2024 Oct 16;14(20):1658. doi: 10.3390/nano14201658.
Salmonid rickettsial septicemia (SRS), caused by , has been the most severe health concern for the Chilean salmon industry. The efforts to control infections have focused on using antibiotics and vaccines. However, infected salmonids exhibit limited responses to the treatments. Here, we developed a poly (D, L-lactide-glycolic acid) (PLGA)-nanosystem functionalized with Atlantic salmon IgM (PLGA-IgM) to specifically deliver florfenicol into infected cells. Polymeric nanoparticles (NPs) were prepared via the double emulsion solvent-evaporation method in the presence of florfenicol. Later, the PLGA-NPs were functionalized with Atlantic salmon IgM through carbodiimide chemistry. The nanosystem showed an average size of ~380-410 nm and a negative surface charge. Further, florfenicol encapsulation efficiency was close to 10%. We evaluated the internalization of the nanosystem and its impact on bacterial load in SHK-1 cells by using confocal microscopy and qPCR. The results suggest that stimulation with the nanosystem elicits a decrease in the bacterial load of when it infects Atlantic salmon macrophages. Overall, the IgM-functionalized PLGA-based nanosystem represents an alternative to the administration of antibiotics in salmon farming, complementing the delivery of antibiotics with the stimulation of the immune response of infected macrophages.
由[病原体名称未给出]引起的鲑鱼立克次氏体败血症(SRS),一直是智利鲑鱼养殖业最严重的健康问题。控制[感染源未明确]感染的努力主要集中在使用抗生素和疫苗上。然而,受感染的鲑科鱼类对这些治疗的反应有限。在此,我们开发了一种用大西洋鲑鱼IgM功能化的聚(D,L-丙交酯-乙交酯)(PLGA)纳米系统(PLGA-IgM),以将氟苯尼考特异性递送至受感染细胞中。在氟苯尼考存在的情况下,通过双乳液溶剂蒸发法制备了聚合物纳米颗粒(NPs)。随后,通过碳二亚胺化学法用大西洋鲑鱼IgM对PLGA-NPs进行功能化。该纳米系统的平均粒径约为380 - 410 nm,表面带负电荷。此外,氟苯尼考的包封效率接近10%。我们通过共聚焦显微镜和定量聚合酶链反应评估了纳米系统在SHK-1细胞中的内化及其对细菌载量的影响。结果表明,当纳米系统感染大西洋鲑巨噬细胞时,用其刺激会使细菌载量降低。总体而言,基于IgM功能化PLGA的纳米系统是鲑鱼养殖中抗生素给药的一种替代方法,通过刺激受感染巨噬细胞的免疫反应来补充抗生素的递送。