Suppr超能文献

将炎症生物标志物纳入非缺血性心力衰竭患者的预后风险评分:一种机器学习方法。

Incorporating inflammatory biomarkers into a prognostic risk score in patients with non-ischemic heart failure: a machine learning approach.

机构信息

State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Key Laboratory of Clinical Research for Cardiovascular Medications, National Health Committee, Beijing, China.

出版信息

Front Immunol. 2023 Aug 15;14:1228018. doi: 10.3389/fimmu.2023.1228018. eCollection 2023.

Abstract

OBJECTIVES

Inflammation is involved in the mechanisms of non-ischemic heart failure (NIHF). We aimed to investigate the prognostic value of 21 inflammatory biomarkers and construct a biomarker risk score to improve risk prediction for patients with NIHF.

METHODS

Patients diagnosed with NIHF without infection during hospitalization were included. The primary outcome was defined as all-cause mortality and heart transplantations. We used elastic net Cox regression with cross-validation to select inflammatory biomarkers and construct the best biomarker risk score model. Discrimination, calibration, and reclassification were evaluated to assess the predictive value of the biomarker risk score.

RESULTS

Of 1,250 patients included (median age, 53 years, 31.9% women), 436 patients (34.9%) experienced the primary outcome during a median of 2.8 years of follow-up. The final biomarker risk score included high-sensitivity C-reactive protein-to-albumin ratio (CAR) and red blood cell distribution width-standard deviation (RDW-SD), both of which were 100% selected in 1,000 times cross-validation folds. Incorporating the biomarker risk score into the best basic model improved the discrimination (Δ-index = 0.012, 95% CI 0.003-0.018) and reclassification (IDI, 2.3%, 95% CI 0.7%-4.9%; NRI, 17.3% 95% CI 6.4%-32.3%) in risk identification. In the cross-validation sets, the mean time-dependent AUC ranged from 0.670 to 0.724 for the biomarker risk score and 0.705 to 0.804 for the basic model with a biomarker risk score, from 1 to 8 years. In multivariable Cox regression, the biomarker risk score was independently associated with the outcome in patients with NIHF (HR 1.76, 95% CI 1.49-2.08, < 0.001, per 1 score increase).

CONCLUSIONS

An inflammatory biomarker-derived risk score significantly improved prognosis prediction and risk stratification, providing potential individualized therapeutic targets for NIHF patients.

摘要

目的

炎症参与了非缺血性心力衰竭(NIHF)的发病机制。本研究旨在探究 21 种炎症生物标志物的预后价值,并构建生物标志物风险评分以改善 NIHF 患者的风险预测。

方法

纳入住院期间无感染的 NIHF 患者。主要终点定义为全因死亡率和心脏移植。我们使用带交叉验证的弹性网络 Cox 回归来选择炎症生物标志物并构建最佳的生物标志物风险评分模型。评估判别能力、校准度和再分类来评估生物标志物风险评分的预测价值。

结果

在纳入的 1250 例患者中(中位年龄为 53 岁,31.9%为女性),436 例(34.9%)在中位 2.8 年的随访期间发生了主要终点事件。最终的生物标志物风险评分包括高敏 C 反应蛋白与白蛋白比值(CAR)和红细胞分布宽度标准差(RDW-SD),这两个标志物在 1000 次交叉验证折叠中均被 100%选择。将生物标志物风险评分纳入最佳基本模型中可改善判别能力(Δ指数=0.012,95%CI 0.003-0.018)和风险识别的再分类(IDI,2.3%,95%CI 0.7%-4.9%;NRI,17.3%,95%CI 6.4%-32.3%)。在交叉验证集中,生物标志物风险评分的平均时间依赖性 AUC 范围为 0.670 至 0.724,基本模型加生物标志物风险评分的 AUC 范围为 0.705 至 0.804,随访时间为 1 至 8 年。在多变量 Cox 回归中,生物标志物风险评分与 NIHF 患者的结局独立相关(HR 1.76,95%CI 1.49-2.08,<0.001,每增加 1 分)。

结论

炎症生物标志物衍生的风险评分显著改善了 NIHF 患者的预后预测和风险分层,为 NIHF 患者提供了潜在的个体化治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6dd/10463734/8b572866043c/fimmu-14-1228018-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验