Suppr超能文献

用于评估患多发性硬化症风险的决策树。

Decision trees to evaluate the risk of developing multiple sclerosis.

作者信息

Pasella Manuela, Pisano Fabio, Cannas Barbara, Fanni Alessandra, Cocco Eleonora, Frau Jessica, Lai Francesco, Mocci Stefano, Littera Roberto, Giglio Sabrina Rita

机构信息

Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy.

Department of Medical Science and Public Health, Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy.

出版信息

Front Neuroinform. 2023 Aug 15;17:1248632. doi: 10.3389/fninf.2023.1248632. eCollection 2023.

Abstract

INTRODUCTION

Multiple sclerosis (MS) is a persistent neurological condition impacting the central nervous system (CNS). The precise cause of multiple sclerosis is still uncertain; however, it is thought to arise from a blend of genetic and environmental factors. MS diagnosis includes assessing medical history, conducting neurological exams, performing magnetic resonance imaging (MRI) scans, and analyzing cerebrospinal fluid. While there is currently no cure for MS, numerous treatments exist to address symptoms, decelerate disease progression, and enhance the quality of life for individuals with MS.

METHODS

This paper introduces a novel machine learning (ML) algorithm utilizing decision trees to address a key objective: creating a predictive tool for assessing the likelihood of MS development. It achieves this by combining prevalent demographic risk factors, specifically gender, with crucial immunogenetic risk markers, such as the alleles responsible for human leukocyte antigen (HLA) class I molecules and the killer immunoglobulin-like receptors (KIR) genes responsible for natural killer lymphocyte receptors.

RESULTS

The study included 619 healthy controls and 299 patients affected by MS, all of whom originated from Sardinia. The gender feature has been disregarded due to its substantial bias in influencing the classification outcomes. By solely considering immunogenetic risk markers, the algorithm demonstrates an ability to accurately identify 73.24% of MS patients and 66.07% of individuals without the disease.

DISCUSSION

Given its notable performance, this system has the potential to support clinicians in monitoring the relatives of MS patients and identifying individuals who are at an increased risk of developing the disease.

摘要

引言

多发性硬化症(MS)是一种影响中枢神经系统(CNS)的持续性神经疾病。多发性硬化症的确切病因仍不确定;然而,人们认为它是由遗传和环境因素共同引起的。MS的诊断包括评估病史、进行神经学检查、进行磁共振成像(MRI)扫描以及分析脑脊液。虽然目前尚无治愈MS的方法,但有许多治疗方法可用于缓解症状、减缓疾病进展并提高MS患者的生活质量。

方法

本文介绍了一种利用决策树的新型机器学习(ML)算法,以实现一个关键目标:创建一种预测工具来评估MS发病的可能性。它通过将普遍的人口统计学风险因素(特别是性别)与关键的免疫遗传风险标志物相结合来实现这一目标,这些标志物包括负责人类白细胞抗原(HLA)I类分子的等位基因以及负责自然杀伤淋巴细胞受体的杀伤免疫球蛋白样受体(KIR)基因。

结果

该研究纳入了619名健康对照者和299名受MS影响的患者,他们均来自撒丁岛。由于性别特征在影响分类结果方面存在严重偏差,因此被忽略。仅考虑免疫遗传风险标志物,该算法能够准确识别73.24%的MS患者和66.07%的非患病个体。

讨论

鉴于其显著的性能,该系统有可能支持临床医生监测MS患者的亲属,并识别出患该病风险增加的个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/583d/10465164/497ecb8df309/fninf-17-1248632-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验