Suppr超能文献

一种使用关联行政数据定义堕胎队列的更准确方法:在加拿大安大略省的应用。

A more accurate approach to define abortion cohorts using linked administrative data: an application to Ontario, Canada.

机构信息

Department of Family Practice, University of British Columbia.

Institute for Clinical Evaluative Sciences (ICES) McMaster.

出版信息

Int J Popul Data Sci. 2022 Apr 29;7(1):1700. doi: 10.23889/ijpds.v7i1.1700. eCollection 2022.

Abstract

BACKGROUND

The shifting landscape of abortion care from a hospital-only to a distributed service including primary care has implications for how to identify abortion cohorts for research and surveillance. The objectives of this study were to 1) create an improved approach to define abortion cohorts using linked administrative data sets and 2) evaluate the performance of this approach for abortion surveillance compared with standard approaches.

METHODS

We applied four principles to identify induced abortion cohorts when some services are delivered beyond hospital settings; 1) exclude early pregnancy losses and postpartum procedures; 2) use multiple data sources; 3) define episodes of care; 4) apply a hierarchical algorithm to determine abortion date to a population-based cohort of all abortion events in Ontario (Canada) from January 1, 2018-March 15, 2020. We calculated risk differences (RD, with 95% confidence intervals) comparing the proportion of medication vs. surgical, first vs. second trimester, and complication incidence applying these principles vs. standard approaches.

RESULTS

Hospital-only data (versus multiple data sources) underestimated the frequency of medication abortion (16.1% vs. 31.4%; RD -15.3% [-14.3, -16.3]) and first-trimester abortion (82.1% vs. 94.5%; RD -12.8 [-11.4, 13.4]) and overestimated incidence of abortion complication (2.9% vs. 0.69%; RD 2.2% [1.8, 2.7]). An unlinked (versus linked) approach underestimated the frequency of abortion complications (0.19% vs 0.69%, -RD 0.50% [-0.44--0.56]). Including (versus excluding) abortions following early pregnancy loss or delivery events increased the estimated incidence of abortion complications (1.29% vs. 0.69%, RD 0.60% [0.51-0.69].

CONCLUSION

New methods are required to accurately identify abortion cohorts for surveillance or research. When legal or regulatory approaches to medication abortion evolve to enable abortion in primary care or office-based settings, hospital-based surveillance systems will become incomplete and biased; to continue valid and complete abortion surveillance, methods must be adjusted to ensure complete capture of procedures across all settings.

摘要

背景

堕胎护理从仅限医院提供的服务向包括初级保健在内的分布式服务转变,这对如何确定堕胎队列以进行研究和监测产生了影响。本研究的目的是 1)创建一种改进的方法,通过链接的行政数据集来定义堕胎队列,2)评估该方法在堕胎监测方面的表现与标准方法相比。

方法

我们应用了四项原则来识别超出医院环境提供的服务的人工流产队列;1)排除早期妊娠丢失和产后程序;2)使用多个数据源;3)定义护理期;4)应用分层算法将安大略省(加拿大)所有堕胎事件的基于人群的队列中的堕胎日期确定为 2018 年 1 月 1 日至 2020 年 3 月 15 日。我们计算了与标准方法相比,应用这些原则时药物与手术、第一和第二孕期以及并发症发生率的差异(RD,95%置信区间)。

结果

仅医院数据(与多个数据源相比)低估了药物流产的频率(16.1%比 31.4%;RD-15.3%[-14.3, -16.3])和第一孕期堕胎的频率(82.1%比 94.5%;RD-12.8[-11.4, 13.4]),并高估了堕胎并发症的发生率(2.9%比 0.69%;RD 2.2%[1.8, 2.7])。非链接(与链接相比)方法低估了堕胎并发症的频率(0.19%比 0.69%,-RD 0.50%[-0.44--0.56])。包括(与不包括相比)早期妊娠丢失或分娩事件后的堕胎增加了堕胎并发症的估计发生率(1.29%比 0.69%,RD 0.60%[0.51-0.69])。

结论

需要新的方法来准确识别堕胎队列以进行监测或研究。当法律或监管方法对药物流产进行调整以使其在初级保健或基于办公室的环境中合法化时,基于医院的监测系统将变得不完整和有偏见;为了继续进行有效和完整的堕胎监测,必须调整方法以确保在所有环境中完整捕获程序。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验