Suppr超能文献

氮掺杂石墨烯量子点复合 GelMA 微凝胶作为荧光 3D 组织构建体。

Nitrogen-functionalized graphene quantum dot incorporated GelMA microgels as fluorescent 3D-tissue Constructs.

机构信息

School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.

Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA.

出版信息

Nanoscale. 2023 Oct 20;15(40):16277-16286. doi: 10.1039/d3nr02612d.

Abstract

Biopolymer microgels present many opportunities in biomedicine and tissue engineering. To understand their behavior in therapeutic interventions, long-term monitoring is critical, which is usually achieved by incorporating fluorescent materials within the hydrogel matrix. Current research is limited due to issues concerning the biocompatibility and instability of the conventional fluorescent species, which also tend to adversely affect the bio-functionality of the hydrogels. Here, we introduce a microfluidic-based approach to generate nitrogen-functionalized graphene quantum dot (NGQD) incorporated gelatin methacryloyl (GelMA) hydrogel microspheres, capable of long-term monitoring while preserving or enhancing the other favorable features of 3D cell encapsulation. A multilayer droplet-based microfluidic device was designed and fabricated to make monodisperse NGQD-loaded GelMA hydrogel microspheres encapsulating skeletal muscle cells (C2C12). Control over the sizes of microspheres could be achieved by tuning the flow rates in the microfluidic device. Skeletal muscle cells encapsulated in these microgels exhibited high cell viability from day 1 (82.9 ± 6.50%) to day 10 (92.1 ± 3.90%). The NGQD-loaded GelMA microgels encapsulating the cells demonstrated higher metabolic activity compared to the GelMA microgels. Presence of sarcomeric α-actin was verified by immunofluorescence staining on day 10. A fluorescence signal was observed from the NGQD-loaded microgels during the entire period of the study. The investigation reveals the advantages of integrating NGQDs in microgels for non-invasive imaging and monitoring of cell-laden microspheres and presents new opportunities for future therapeutic applications.

摘要

生物聚合物微凝胶在生物医药和组织工程中具有许多应用机会。为了了解它们在治疗干预中的行为,长期监测至关重要,这通常通过在水凝胶基质中掺入荧光材料来实现。由于传统荧光物质的生物相容性和不稳定性问题,目前的研究受到限制,这些问题也往往会对水凝胶的生物功能产生不利影响。在这里,我们介绍了一种基于微流控的方法来生成氮功能化石墨烯量子点(NGQD)掺入明胶甲基丙烯酰(GelMA)水凝胶微球,能够进行长期监测,同时保持或增强 3D 细胞包封的其他有利特性。设计并制造了一种多层液滴式微流控装置,以制造单分散 NGQD 负载的 GelMA 水凝胶微球,包封骨骼肌细胞(C2C12)。通过调整微流控装置中的流速,可以控制微球的尺寸。包封在这些微凝胶中的骨骼肌细胞从第 1 天(82.9±6.50%)到第 10 天(92.1±3.90%)表现出高细胞活力。与 GelMA 微凝胶相比,负载 NGQD 的 GelMA 微凝胶包封的细胞表现出更高的代谢活性。通过免疫荧光染色在第 10 天验证了肌节α-肌动蛋白的存在。在整个研究期间,从负载 NGQD 的微凝胶中观察到荧光信号。该研究揭示了在微凝胶中整合 NGQD 进行非侵入性成像和监测细胞负载微球的优势,并为未来的治疗应用提供了新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验