Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
Environ Monit Assess. 2023 Aug 31;195(9):1120. doi: 10.1007/s10661-023-11678-9.
To diminish disease transmission together with promoting effective management techniques, it is crucial to monitor plant health and detect pathogens earlier. The initial part in reducing losses sourced from plant diseases is to make an accurate and earlier identification. Thus, the usage of unmanned aerial vehicle (UAV) hyperspectral imaging (HSI) sensors for surveying and assessing crops, orchards, and forests has rapidly elevated over the last decade, particularly for the stress management like water, diseases, nutrition deficits, and pests. Using Minkowski Distance-based Fuzzy C Means (MD-FCM) clustering and Xavier initialization-adapted Cosine Similarity-induced Radial Bias Function Neural Network (XCS-RBFNN) techniques, a UAV HS imaging remote sensor for Spatial and Temporal Resolution (STR) of mango plant disease and pest identification is proposed in this scheme. Collecting the input UAV source (image or video) is eventuated initially along with the Region of Interest (ROI) calculated which is followed by preprocessing. Leaf segmentation is eventuated using Logistic U-net after preprocessing. Next, MD-FCM performs clustering to cluster the diseased leaves and pests individually. The disease and pest characteristics are then retrieved separately and classified further. The requisite features are then chosen from the retrieved features utilizing the Levy Flight Distribution-produced Butterfly Optimization Algorithm (LFD-BOA). Finally, the XCS-RBFNN classifier is utilized to categorize the various diseases together with pests found in the UAV input source using the chosen features. The proposed framework's experimental findings are then compared to some prevailing schemes, with the results revealing that the proposed work outperforms other benchmark techniques.
为了减少疾病传播并促进有效的管理技术,监测植物健康状况并更早地发现病原体至关重要。减少植物病害损失的第一步是进行准确和更早的识别。因此,在过去十年中,无人飞行器 (UAV) 高光谱成像 (HSI) 传感器在勘测和评估作物、果园和森林方面的使用迅速增加,特别是在水、疾病、营养不足和害虫等方面的压力管理方面。本方案提出了一种基于 Minkowski 距离的模糊 C 均值 (MD-FCM) 聚类和 Xavier 初始化自适应余弦相似性诱导的径向偏差函数神经网络 (XCS-RBFNN) 技术的 UAV HS 成像遥感传感器,用于芒果植物病虫害的时空分辨率 (STR) 识别。首先收集输入的 UAV 源(图像或视频),并计算出感兴趣区域 (ROI),然后进行预处理。预处理后,使用逻辑 U-net 进行叶片分割。接下来,MD-FCM 进行聚类,将患病叶片和害虫分别聚类。然后分别检索病虫害特征并进一步分类。然后使用Levy Flight Distribution 生成的蝴蝶优化算法 (LFD-BOA) 从检索到的特征中选择所需的特征。最后,使用 XCS-RBFNN 分类器使用所选特征对从 UAV 输入源中发现的各种病虫害进行分类。然后将提出的框架的实验结果与一些现有方案进行比较,结果表明该工作优于其他基准技术。