Suppr超能文献

iCircDA-NEAE:用于 circRNA-疾病关联预测的加速属性网络嵌入和动态卷积自动编码器。

iCircDA-NEAE: Accelerated attribute network embedding and dynamic convolutional autoencoder for circRNA-disease associations prediction.

机构信息

Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.

Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.

出版信息

PLoS Comput Biol. 2023 Aug 31;19(8):e1011344. doi: 10.1371/journal.pcbi.1011344. eCollection 2023 Aug.

Abstract

Accumulating evidence suggests that circRNAs play crucial roles in human diseases. CircRNA-disease association prediction is extremely helpful in understanding pathogenesis, diagnosis, and prevention, as well as identifying relevant biomarkers. During the past few years, a large number of deep learning (DL) based methods have been proposed for predicting circRNA-disease association and achieved impressive prediction performance. However, there are two main drawbacks to these methods. The first is these methods underutilize biometric information in the data. Second, the features extracted by these methods are not outstanding to represent association characteristics between circRNAs and diseases. In this study, we developed a novel deep learning model, named iCircDA-NEAE, to predict circRNA-disease associations. In particular, we use disease semantic similarity, Gaussian interaction profile kernel, circRNA expression profile similarity, and Jaccard similarity simultaneously for the first time, and extract hidden features based on accelerated attribute network embedding (AANE) and dynamic convolutional autoencoder (DCAE). Experimental results on the circR2Disease dataset show that iCircDA-NEAE outperforms other competing methods significantly. Besides, 16 of the top 20 circRNA-disease pairs with the highest prediction scores were validated by relevant literature. Furthermore, we observe that iCircDA-NEAE can effectively predict new potential circRNA-disease associations.

摘要

越来越多的证据表明 circRNAs 在人类疾病中发挥着关键作用。circRNA-疾病关联预测对于理解发病机制、诊断和预防以及识别相关生物标志物非常有帮助。在过去的几年中,已经提出了大量基于深度学习 (DL) 的方法来预测 circRNA-疾病关联,并取得了令人印象深刻的预测性能。然而,这些方法有两个主要缺点。第一个是这些方法对数据中的生物计量信息利用不足。其次,这些方法提取的特征不足以突出代表 circRNAs 和疾病之间的关联特征。在这项研究中,我们开发了一种名为 iCircDA-NEAE 的新型深度学习模型,用于预测 circRNA-疾病关联。特别是,我们首次同时使用疾病语义相似性、高斯相互作用核、circRNA 表达谱相似性和 Jaccard 相似性,并基于加速属性网络嵌入 (AANE) 和动态卷积自动编码器 (DCAE) 提取隐藏特征。在 circR2Disease 数据集上的实验结果表明,iCircDA-NEAE 明显优于其他竞争方法。此外,通过相关文献验证了预测得分最高的 20 对 circRNA-疾病对中的 16 对。此外,我们观察到 iCircDA-NEAE 可以有效地预测新的潜在 circRNA-疾病关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53e4/10470932/de0297294555/pcbi.1011344.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验