School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou 213164, Jiangsu, China E-mail:
School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou 213164, Jiangsu, China.
Water Sci Technol. 2023 Aug;88(4):829-850. doi: 10.2166/wst.2023.211.
Microcystis aeruginosa is the dominant species in the blooms of eutrophic lakes such as Taihu Lake in China. Chlorophyll-a is one of the most common indicators to characterize its biomass. The nonlinearity and unsteadiness of the chlorophyll-a sequence decrease the prediction accuracy. In this paper, a secondary decomposition prediction method based on the integration of wavelet decomposition, variational modal decomposition, and gated recurrent unit (WD-VMD-GRU) is proposed. First, the original sequence is decomposed once using wavelet decomposition (WD). Then, the components with higher sample entropy values are decomposed using variational modal decomposition (VMD). Finally, each component is predicted using a gated recurrent unit (GRU), and the final prediction results are obtained by reconstructing each component result. The decomposition effect is ranked as VMD > WD > CEEMDAN > EMD. The WD-VMD-GRU model has a significant advantage compared to the basic model, with an increase of over 6.5% in R. The secondary decomposition reduces the difficulty of predicting GRU components and has better prediction performance. The RMSE, MAE, and R were 1.752, 1.450, 0.969 at 2-day prediction, and 3.169, 2.711, 0.908 at 6-day prediction. Therefore, the WD-VMD-GRU model is superior in accuracy to other methods and can provide a scientific basis for the growth prediction research of M. aeruginosa.
铜绿微囊藻是中国太湖等富营养化湖泊水华的优势种,叶绿素 a 是其生物量特征的最常用指标之一。叶绿素 a 序列的非线性和非平稳性降低了预测精度。本文提出了一种基于小波分解、变分模态分解和门控循环单元(WD-VMD-GRU)集成的二次分解预测方法。首先,原始序列通过小波分解(WD)进行一次分解。然后,对具有较高样本熵值的分量进行变分模态分解(VMD)。最后,使用门控循环单元(GRU)对每个分量进行预测,并通过重建每个分量的结果得到最终的预测结果。分解效果的排名为 VMD > WD > CEEMDAN > EMD。WD-VMD-GRU 模型与基本模型相比具有显著优势,R 值增加了 6.5%以上。二次分解降低了 GRU 分量预测的难度,具有更好的预测性能。在 2 天预测时,RMSE、MAE 和 R 的值分别为 1.752、1.450 和 0.969,在 6 天预测时,RMSE、MAE 和 R 的值分别为 3.169、2.711 和 0.908。因此,WD-VMD-GRU 模型在准确性方面优于其他方法,可以为铜绿微囊藻的生长预测研究提供科学依据。