Suppr超能文献

基于粒子群算法优化变分模态分解的 GRU 神经网络改进水库叶绿素-a 浓度预测。

Improved prediction of chlorophyll-a concentrations in reservoirs by GRU neural network based on particle swarm algorithm optimized variational modal decomposition.

机构信息

School of Electrical and Information, Northeast Agricultural University, Harbin 150030, China.

Department of Ecology, Hebei University of Environmental Engineering, Qinhuangdao 066102, China.

出版信息

Environ Res. 2023 Mar 15;221:115259. doi: 10.1016/j.envres.2023.115259. Epub 2023 Jan 10.

Abstract

The accurate and reliable prediction of chlorophyll-a (Chl-a) concentration is of great significance in reservoir environment management and pollution control. To improve the accuracy of Chl-a index prediction, a novel hybrid water quality prediction method was proposed for gated recurrent unit (GRU) neural network based on particle swarm algorithm optimized variational modal decomposition (PV-GRU). The results showed that the variational mode decomposition (VMD) optimized by particle swarm optimization (PSO) in this study effectively reduced the non-smooth of water quality data. In addition, the GRU neural network reduced the risk of overfitting the deep-learning model with small sample data. Overall, the PV-GRU prediction model exhibited significant superiority in predicting non-smooth and non-linear Chl-a sequences with a relatively small sample size. The prediction errors of PV-GRU model were all less than those of other comparative models, and the fitting determination coefficient R was 94.21%. These results indicated that the proposed PV-GRU model can effectively predict the content of Chl-a in reservoirs, which provides an alternative new method for water quality prediction to prevent and control eutrophication in reservoirs.

摘要

准确可靠地预测叶绿素-a(Chl-a)浓度对水库环境管理和污染控制具有重要意义。为了提高 Chl-a 指标预测的准确性,提出了一种基于粒子群算法优化变分模态分解(PSO-VMD)的门控循环单元(GRU)神经网络新型混合水质预测方法。结果表明,本研究中粒子群优化(PSO)优化的变分模态分解(VMD)有效降低了水质数据的非平滑性。此外,GRU 神经网络降低了小样本数据深度学习模型过拟合的风险。总体而言,PV-GRU 预测模型在预测具有较小样本量的非平滑和非线性 Chl-a 序列方面表现出显著优势。PV-GRU 模型的预测误差均小于其他比较模型,拟合确定系数 R 为 94.21%。这些结果表明,所提出的 PV-GRU 模型可以有效地预测水库中 Chl-a 的含量,为水库富营养化的预防和控制提供了一种替代的水质预测新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验