Suppr超能文献

基于经验模态分解的 GRU 神经网络的地面监测站点 PM2.5 浓度预测。

PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition.

机构信息

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China.

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Software Engineering in Hebei Province, Qinhuangdao 066004, China.

出版信息

Sci Total Environ. 2021 May 10;768:144516. doi: 10.1016/j.scitotenv.2020.144516. Epub 2021 Jan 8.

Abstract

The main component of haze is the particulate matter (PM) 2.5. How to explore the laws of PM2.5 concentration changes is the main content of air quality prediction. Combining the characteristics of temporality and non-linearity in PM2.5 concentration series, more and more deep learning methods are currently applied to PM2.5 predictions, but most of them ignore the non-stationarity of time series, which leads to a lower accuracy of model prediction. To address this issue, an integration method of gated recurrent unit neural network based on empirical mode decomposition (EMD-GRU) for predicting PM2.5 concentration was proposed in this paper. This method uses empirical mode decomposition (EMD) to decompose the PM2.5 concentration sequence first and then fed the multiple stationary sub-sequences obtained after the decomposition and the meteorological features into the constructed GRU neural network successively for training and predicting. Finally, the sub-sequences of the prediction output are added to obtain the prediction results of PM2.5 concentration. The forecast result of the case in this paper show that the EMD-GRU model reduces the RMSE by 44%, MAE by 40.82%, and SMAPE by 11.63% compared to the single GRU model.

摘要

霾的主要成分是颗粒物(PM)2.5。探索 PM2.5 浓度变化规律是空气质量预测的主要内容。结合 PM2.5 浓度序列的时间性和非线性特征,目前越来越多的深度学习方法被应用于 PM2.5 预测,但大多数方法忽略了时间序列的非平稳性,导致模型预测的准确性较低。针对这一问题,本文提出了一种基于经验模态分解(EMD)的门控循环单元神经网络(GRU)集成方法(EMD-GRU)用于预测 PM2.5 浓度。该方法首先使用经验模态分解(EMD)对 PM2.5 浓度序列进行分解,然后将分解后得到的多个平稳子序列和气象特征依次输入到构建的 GRU 神经网络中进行训练和预测。最后,将预测输出的子序列相加得到 PM2.5 浓度的预测结果。本文案例的预测结果表明,与单一的 GRU 模型相比,EMD-GRU 模型将 RMSE 降低了 44%,MAE 降低了 40.82%,SMAPE 降低了 11.63%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验