Varley Joel B, Ray Keith G, Lordi Vincenzo
Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
ACS Appl Mater Interfaces. 2023 Sep 13;15(36):43111-43123. doi: 10.1021/acsami.3c06725. Epub 2023 Aug 31.
Spin qubits based on Si and SiGe quantum dot architectures exhibit among the best coherence times of competing quantum computing technologies, yet they still suffer from charge noise that limit their qubit gate fidelities. Identifying the origins of these charge fluctuations is therefore a critical step toward improving Si quantum-dot-based qubits. Here, we use hybrid functional calculations to investigate possible atomistic sources of charge noise, focusing on charge trapping at Si and Ge dangling bonds (DBs). We evaluate the role of global and local environment in the defect levels associated with DBs in Si, Ge, and SiGe alloys, and consider their trapping and excitation energies within the framework of configuration coordinate diagrams. We additionally consider the influence of strain and oxidation in charge-trapping energetics by analyzing Si and Ge DBs in SiO and strained Si layers in typical SiGe quantum dot heterostructures. Our results identify that Ge dangling bonds are more problematic charge-trapping centers both in typical SiGe alloys and associated oxidation layers, and they may be exacerbated by compositional inhomogeneities. These results suggest the importance of alloy homogeneity and possible passivation schemes for DBs in Si-based quantum dot qubits and are of general relevance to mitigating possible trap levels in other Si, Ge, and SiGe-based metal-oxide-semiconductor stacks and related devices.
基于硅和硅锗量子点架构的自旋量子比特在竞争的量子计算技术中展现出了最佳的相干时间之一,但它们仍然受到电荷噪声的影响,这种噪声限制了它们的量子比特门保真度。因此,确定这些电荷波动的来源是改进基于硅量子点的量子比特的关键一步。在这里,我们使用混合泛函计算来研究电荷噪声可能的原子来源,重点关注硅和锗悬空键(DBs)处的电荷俘获。我们评估了全局和局部环境在与硅、锗和硅锗合金中DBs相关的缺陷能级中的作用,并在构型坐标图的框架内考虑它们的俘获和激发能量。我们还通过分析典型硅锗量子点异质结构中SiO和应变硅层中的硅和锗DBs,考虑了应变和氧化对电荷俘获能量学的影响。我们的结果表明,在典型的硅锗合金和相关氧化层中,锗悬空键是更成问题的电荷俘获中心,并且它们可能会因成分不均匀性而加剧。这些结果表明了合金均匀性以及硅基量子点量子比特中DBs可能的钝化方案的重要性,并且对于减轻其他基于硅、锗和硅锗的金属氧化物半导体堆栈及相关器件中可能的陷阱能级具有普遍意义。